摘要:
Stent delivery systems having improved deliverability comprising an elongate member having an inflation lumen and a guidewire lumen therein; a balloon having an interior that is in fluid communication with the inflation lumen; and a stent comprising a coating mounted on the balloon. Methods for making stent delivery systems having improved deliverability. Methods for delivering two stent delivery systems concurrently through a guiding catheter, each stent delivery system comprising elongate member having an inflation lumen and a guidewire lumen therein, a balloon having an interior that is in fluid communication with the inflation lumen, and a stent comprising a coating mounted on the balloon. Stent coatings may comprise a pharmaceutical agent at least a portion of which is in crystalline form.
摘要:
Provided herein is a device comprising: a. stent; b. a plurality of layers on said stent framework to form said device; wherein at least one of said layers comprises a bioabsorbable polymer and at least one of said layers comprises one or more active agents; wherein at least part of the active agent is in crystalline form.
摘要:
Provided is a coated implantable medical device, comprising: a substrate; and a coating disposed on the substrate, wherein the coating comprises at least one polymer and at least one pharmaceutical agent in a therapeutically desirable morphology and/or at least one active biological agent and optionally, one or more pharmaceutical carrying agents; wherein substantially all of pharmaceutical agent and/or active biological agent remains within the coating and on the substrate until the implantable device is deployed at an intervention site inside the body of a subject and wherein upon deployment of the medical device in the body of the subject a portion of the pharmaceutical agent and/or active biological agent is delivered at the intervention site along with at least a portion of the polymer and/or a at least a portion of the pharmaceutical carrying agents.
摘要:
A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.
摘要:
Provided herein is a device comprising: a. stent; b. a plurality of layers on said stent framework to form said device; wherein at least one of said layers comprises a bioabsorbable polymer and at least one of said layers comprises one or more active agents; wherein at least part of the active agent is in crystalline form.
摘要:
A method of treating a dielectric surface portion of a semiconductor substrate, comprising the steps of: (a) providing a semiconductor substrate having a dielectric surface portion; and then (b) treating said dielectric surface portion with a coating reagent, the coating reagent comprising a reactive group coupled to a coordinating group, with the coordinating group having a metal bound thereto, so that the metal is deposited on the dielectric surface portion to produce a surface portion treated with a metal.
摘要:
A method for carrying out positive tone lithography with a carbon dioxide solvent system is carried out by (a) providing a substrate having a polymer resist layer formed thereon; (b) exposing at least one portion of the polymer resist layer to radiant energy to form at least one light field region in the polymer resist layer; and then (c) contacting the polymer resist layer to a carbon dioxide solvent system, the solvent system preferably comprising a polar group, under conditions in which the at least one light field region is preferentially removed.
摘要:
A method of displacing a supercritical fluid from a pressure vessel (e.g., in a microelectronic manufacturing process), with the steps of: providing an enclosed pressure vessel containing a first supercritical fluid (said supercritical fluid preferably comprising carbon dioxide); adding a second fluid (typically also a supercritical fluid) to said vessel, with said second fluid being added at a pressure greater than the pressure of the first supercritical fluid, and with said second fluid having a density less than that of the first supercritical fluid; forming an interface between the first supercritical fluid and the second fluid; and displacing at least a portion of the first supercritical fluid from the vessel with the pressure of the second, preferably fluid while maintaining the interface therebetween.
摘要:
A system for the controlled addition of detergent formulations and the like to a carbon dioxide cleaning apparatus comprises: (a) a high pressure wash vessel; (b) an auxiliary vessel; (c) a drain line connecting the auxiliary vessel to the wash vessel; (d) optionally but preferably, a separate vent line connecting the auxiliary vessel to the wash vessel; (e) a detergent reservoir; and (f) a detergent supply line connecting the detergent reservoir to the auxiliary vessel. An advantage of this apparatus is that, because the detergent formulation can be pumped into the auxiliary vessel in a predetermined aliquot or amount, which predetermined aliquot or amount can then be transferred into the wash vessel where it combines with the liquid carbon dioxide cleaning solution, the detergent formulation can be added to the cleaning solution in a more controlled or accurate manner. An alternate embodiment adapted for the addition of aqueous detergent formulations and the like to a carbon dioxide dry cleaning system under turbulent conditions comprises: (a) a high pressure wash vessel; (b) a filter; (c) a carbon dioxide cleaning solution drain line interconnecting the wash vessel to the filter; (d) a carbon dioxide cleaning solution supply line connecting the filter to the wash vessel; (e) a first high pressure pump (i.e., a pump that is capable of pumping liquid solutions comprising liquid carbon dioxide) operably connected to the drain line; (f) a detergent formulation reservoir; (g) a detergent formulation supply line connecting the reservoir to the carbon dioxide cleaning solution supply line; and (h) a second high pressure pump operably connected to the detergent formulation supply line for transferring detergent formulation from the detergent formulation reservoir into the carbon dioxide cleaning solution under turbulent conditions.
摘要:
A method of cleaning and removing solid particles during a manufacturing process from a microelectronic device such as a resist-coated semiconductor substrate, a MEM's device, or an optoelectronic device comprising the steps of: (a) providing a partially fabricated integrated circuit, MEM's device, or optoelectronic device having water and entrained solutes on the substrate; (b) providing a densified (e.g., liquid or supercritical) carbon dioxide cleaning composition, the cleaning composition comprising carbon dioxide and a cleaning adjunct, the cleaning adjunct selected from the group consisting of cosolvents, surfactants, and combinations thereof; (c) immersing the surface portion in the densified carbon dioxide cleaning composition to remove solid particles from the surface portion; and then (d) removing the cleaning composition from the surface portion. Process parameters are controlled so that the cleaning composition is maintained as a homogeneous composition during the immersing step, the removing step, or both the immersing and removing step, without substantial deposition of the drying/cleaning adjunct or solid particles on the substrate.