摘要:
Methods of manufacturing a semiconductor device are provided. The method includes forming an isolation region in a substrate to define active regions extending in a single direction and being spaced apart from each other by the isolation region, forming a conductive layer in the isolation region and the active regions, etching the conductive layer to form bit line trenches extending in a first direction that is non-perpendicular to the single direction, forming bit line patterns in respective ones of the bit line trenches, etching the conductive layer to form a plurality of plug trenches two dimensionally arrayed along the first direction and a second direction perpendicular to the first direction, and filling the plug trenches with an insulation material to define conductive plug patterns in portions of the active regions. Related semiconductor devices are also provided.
摘要:
A method for fabricating an isolation layer in a semiconductor device, comprising: forming a trench in a semiconductor substrate; forming a flowable insulation layer on the trench and the semiconductor substrate; converting the flowable insulation layer to a silicon oxide layer by implementing a curing process comprising continuously heating the flowable insulation layer; and forming an isolation layer by planarizing the silicon oxide layer.
摘要:
A semiconductor device having a recessed channel and a method for manufacturing the same. The semiconductor device comprises a semiconductor substrate formed with an isolation layer defining an active region including a channel region and a junction region, a recessed trench including a top trench formed within the channel region of the semiconductor substrate and a bottom trench formed from a bottom surface of the top trench with a width narrower than the top trench, and a gate stack overlapping the recessed trench and extending across the active region.
摘要:
A method for fabricating a semiconductor device having a recess channel includes forming an isolation layer that delimits an active region over a semiconductor substrate; exposing a region to be formed with a bulb recess trench over the semiconductor substrate; forming an upper trench by etching the exposed portion of the semiconductor substrate; forming, on a side wall of the upper trench, a silicon nitride barrier layer that exposes a bottom face of the upper trench but blocks a side wall of the upper trench; forming a lower trench of a bulb type by etching the exposed bottom face of the upper trench using the etch barrier layer as an etch mask, to form the bulb recess trench including the upper trench and the lower trench; forming a fin-structured bottom protrusion part including an upper face and a side face by etching the isolation layer so that the isolation layer has a surface lower than the bottom face of the lower trench; and forming a gate stack overlapped with the bulb recess trench and the bottom protrusion part.
摘要:
A semiconductor device having a recessed channel and a method for manufacturing the same. The semiconductor device comprises a semiconductor substrate formed with an isolation layer defining an active region including a channel region and a junction region, a recessed trench including a top trench formed within the channel region of the semiconductor substrate and a bottom trench formed from a bottom surface of the top trench with a width narrower than the top trench, and a gate stack overlapping the recessed trench and extending across the active region.
摘要:
A semiconductor device includes a step-type recess pattern formed in a substrate, a gate electrode buried in the recess pattern and having a gap disposed between the gate electrode and upper sidewalls of the recess pattern, an insulation layer filling the gap, and a source and drain region formed in a portion of the substrate at two sides of the recess pattern. The semiconductor device is able to secure a required data retention time by suppressing the increase of leakage current caused by the reduction of a design rule.
摘要:
A semiconductor device includes a substrate with a recess pattern, a gate electrode filling the recess pattern, a threshold voltage adjusting layer formed in the substrate under the recess pattern, a source/drain region formed in the substrate on both sides of the gate electrode and a gate insulation layer, with the recess pattern being disposed between the gate electrode and the substrate, wherein the thickness of the gate insulation layer formed in a region adjacent to the source/drain region is greater than the thickness of the gate insulation layer formed in a region adjacent to the threshold voltage adjusting layer.
摘要:
Disclosed are a semiconductor device with a metal gate and a method of manufacturing the same. The method of the present invention includes: preparing a semiconductor substrate having a isolation layer to define an active region; forming a gate insulation layer on the semiconductor substrate; sequentially forming a polysilicon layer, a first metal silicide layer, a metal nitride layer and a metal layer on the gate insulation layer including the isolation layer; etching the metal layer and the metal nitride layer so that the metal layer and the metal nitride layer have a narrower width than that of a desired gate; forming a second metal silicide layer on the first metal silicide layer including the etched metal nitride layer and the metal layer; forming a hard mask on the second metal silicide layer so that the hard mask has a desired gate width; and etching the second metal silicide layer, the first metal silicide layer, the polysilicon layer and the gate insulation layer by using the hard mask as an etching barrier, so as to form a metal gate with a structure in. which the metal nitride and the metal layer are enclosed with the first and second metal silicide layers.
摘要:
A method for forming fine patterns in a semiconductor device includes forming a first mask layer over an etch target layer, forming a first pattern over the first mask layer, reducing a size of the first pattern, forming a first spacer on a side face of the first pattern, removing the first pattern and patterning the first mask layer using the first spacer as a mask and removing the first spacer. The method also includes oxidating a surface of the patterned first mask layer, forming the first mask layer with reduced size by removing the oxidated portion over the surface of the first mask layer, forming a second spacer on a side wall of the first mask layer and removing the first mask layer, and patterning the etch target layer using the second spacer as a mask.
摘要:
In manufacturing a PMOS transistor, a semiconductor substrate having an active region and a field region is formed with a hard mask layer, which covers a center portion of the active region on the substrate in a lengthwise direction of a channel. The hard mask layer exposes the center portion of the active region in a widthwise direction of the channel and covers both edges of the substrate and the field region adjacent to the both edges. The substrate is etched to a predetermined depth using the hard mask layer as an etching barrier. The hard mask layer is then removed. A gate covering the center portion of the active region is formed on the lengthwise direction of the channel. Source and drain regions are formed at both edges of the gate.