Abstract:
An analytical cell including a lightguide with a plurality of conduits filled with a migration medium. The medium, the lightguide and a surrounding medium have refractive indices selected such that light entering the lightguide is internally reflected within the lightguide to provide substantially uniform illumination of the conduits.
Abstract:
Sample processing devices that include transmissive layers and control layers to reduce or eliminate cross-talk between process chambers in the processing device are disclosed. The transmissive layers may transmit significant portions of signal light and/or interrogation light while the control layers block significant portions of signal light and/or interrogation light. Methods of manufacturing processing devices that include transmissive layers and control layers are also disclosed. The methods may involve continuous forming processes including co-extrusion of materials to form the transmissive layer and control layer in a processing device, followed by formation of the process chambers in the control layer. Alternatively, the methods may involve extrusion of materials for the control layer, followed by formation of process chambers in the control layer.
Abstract:
An analytical cell including a lightguide with a plurality of conduits filled with a migration medium. The medium, the lightguide and a surrounding medium have refractive indices selected such that light entering the lightguide is internally reflected within the lightguide to provide substantially uniform illumination of the conduits.
Abstract:
An ergonometric chestpiece for a stethoscope adapted to receive auscultatory sounds from a body and adapted to be coupled to an earpiece for a user. The chestpiece is adapted to be grasped by a thumb and at least one finger of the user. The chestpiece has a bottom surface which is generally planar and is adapted to be placed near the body for receiving the auscultatory sounds. The chestpiece has an upper portion opposite the bottom surface. The upper portion has a raised center portion defining left and right gripping surfaces which form recesses defined by the left and right gripping surfaces and by a surface generally parallel to but opposite the bottom surface. The left and right gripping surfaces are adapted to receive the thumb and the at least one finger of the user. Left and right gripping surfaces along with the surface generally parallel to but opposite the bottom surface forms a physical stop for the thumb and the at least one finger from contacting the body when the thumb and the at least one finger grasp the raised center of the upper portion. The gripping surfaces may be defined by left and right walls disposed generally normal to the bottom surface. The left and right walls may be concave. The ergonometric chestpiece may be generally circular and the left and right walls are cylindrically concave around axes generally orthogonal to the bottom surface. The top surface of the raised center portion may be sloped with respect to the bottom surface, the top surface being closer to the bottom surface at the front of the chestpiece than at the rear of the chestpiece.
Abstract:
Power management circuitry of a portable electronic biosensor implements conditional power management logic to control biosensor power usage and to discriminate between intended use and nonuse of the biosensor by a clinician. The biosensor is configured to sense a property of the human body, such as a manifestation of acoustic energy produced by matter of biological origin or an action potential of the human body. An output signal is produced that is representative of the sensed property. A sensor of the biosensor produces a signal having a plurality of sensor signal features that are received by a detector of the power management circuitry. The power management circuitry or a processor of the biosensor discriminates between intended use and nonuse of the biosensor by the clinician using the sensor signal features. Power supplied to biosensor components is controlled based on the sensor signal features.
Abstract:
Methods and devices for the thermal processing of samples are disclosed, including portable, integrated processing assemblies for occluding channels in a fluidic device.
Abstract:
An assembly for insertion into the cardiovascular system of a patient comprising a catheter having first and second lumens and a distal port. The first lumen opens at the distal port. A probe is received in the second lumen. The probe includes a sensor responsive to a constituent of blood for providing a signal which is related to the constituent. The catheter has a window for allowing the constituent of blood to pass from outside the catheter to the sensor while substantially preventing other constituents of blood from passing from the outside of the catheter to the sensor.
Abstract:
An electrical stimulator for biological tissue having remote control. A remote element communicates an operator response to the electrical stimulator. A control element samples the communication from the remote element and adjusts one or more of certain of sets of stimulus parameters maintained in a storage element and utilizes the adjusted stimulus parameters to generate an electrical stimulus signal or utilizes the communciation from the remote element to trigger the generation of an electrical stimulus signal based upon the stored stimulus parameters.
Abstract:
An electrical stimulator for biological tissue having mode control. Circuit configuration parameters are stored during a certain circuit operation, such as power up. The circuit configuration parameters are checked during a second circuit configuration, such as, steady state operation and either modulated or unmodulated sets of stimulus parameters utilized to generate an electrical stimulus signal.