摘要:
One embodiment of the invention includes a method for forming an optical fiber. The method comprises providing a preform having a core material and a glass cladding material surrounding the core material. The method also comprises drawing the preform at a temperature that is greater than a melting temperature of the core material to form a drawn fiber. The method further comprises cooling the drawn fiber to form the optical fiber having a crystalline fiber core and a cladding that surrounds the crystalline fiber core and extends axially along a length of the crystalline fiber core.
摘要:
Recent theoretical investigations have predicted the existence of axially frozen modes that arise when light is incident upon an anisotropic two-dimensional photonic crystal. Such electromagnetic modes are of interest since they suggest a near-zero group velocity with extraordinary amplitudes. The present invention addresses the crystal physics associated with realizing such effects and provides for the development of materials suitable for use in the forming photonic crystals that can exhibit such effects.
摘要:
Optical waveguides interconnect optical information processing devices, or connect such devices with other optical communication links such as glass optical fibers. Fluoropolymers consisting of alternating perfluorocyclobutane and aryl ether linkages possess suitable properties for optical waveguides and other devices due to tunability in optical properties of the copolymers. Perfluorocyclobutane (PFCB) copolymer may be employed in solutions that exhibit a high solids content. Such solutions show useful physical properties for optical waveguide devices since the solutions are capable of achieving single step film thicknesses, when applied to a substrate, of greater than about 0.6 microns, and sometimes may achieve a thickness of 10 microns or more.
摘要:
The disclosure provides compositions prepared by combining nanomaterials with a halide-containing polymer, thereby forming a combined polymer matrix having dispersed nanomaterials within the matrix. The nanomaterials may be carbon-based nanotubes, in some applications. A halide-containing monomer is combined with nanotubes, and then polymerized in some compositions. In other applications, a halide-containing polymer is solution processed with nanotubes to form useful compositions in the invention. Also disclosed are probes for near field detection of radiation.
摘要:
Recent theoretical investigations have predicted the existence of axially frozen modes that arise when light is incident upon an anisotropic two-dimensional photonic crystal. Such electromagnetic modes are of interest since they suggest a near-zero group velocity with extraordinary amplitudes. The present invention addresses the crystal physics associated with realizing such effects and provides for the development of materials suitable for use in the forming photonic crystals that can exhibit such effects.
摘要:
The disclosure provides compositions prepared by combining nanomaterials with a halide-containing polymer, thereby forming a combined polymer matrix having dispersed nanomaterials within the matrix. The nanomaterials may be carbon-based nanotubes, in some applications. A halide-containing monomer is combined with nanotubes, and then polymerized in some compositions. In other applications, a halide-containing polymer is solution processed with nanotubes to form useful compositions in the invention. Also disclosed are probes for near field detection of radiation.
摘要:
The present invention is directed to optical devices. More specifically, the disclosed devices include a film defining a periodic array of surface elements so as to give rise to surface plasmon polaritons. The film also includes at least a single aperture having a diameter less than the wavelength of light. In one embodiment, the surface elements can be an array of anisotropic apertures and the films can act as a polarizer. The disclosed devices can also include a material having a variable refractive index substantially adjacent to the metal film. For example, the refractive index of the adjacent material can vary according to some characteristic of the light incident to the device, for instance, the intensity or the angle of incidence of the light. In this embodiment, resonant coupling of incident light with the SPP, and hence transmittivity of the device, can depend upon the nature of incident light. The disclosed devices can be useful in, for example, remote polarizers, polarization mode dispersion, isolators, multi-color displays, switches, such as can be controlled according to incident sunlight, or optical filters, such as for eye protection devices, filtering out possibly harmful light.
摘要:
Optically transparent composite materials in which solid solution inorganic nanoparticles are dispersed in a host matrix inert thereto, wherein the nanoparticles are doped with one or more active ions at a level up to about 60 mole % and consist of particles having a dispersed particle size between about 1 and about 100 nm, and the composite material with the nanoparticles dispersed therein is optically transparent to wavelengths at which excitation, fluorescence or luminescence of the active ions occur. Luminescent devices incorporating the composite materials are also disclosed.
摘要:
Crystalline colloidal arrays (CCA) which have been encapsulated in a polymer matrix to produce more robust polymerized crystalline colloidal arrays (PCCA) are provided. The PCCA's of the present invention can be in the form of a hydrogel which can be compatible for use with a biological system. The polymer matrix of the PCCA is formed of polymerized poly(ethylene glycol) based monomer units which can provide a desired functionality to the PCCA. The PCCA can be formed to exhibit a photonic bandgap at a certain wavelength. The photonic bandgap can be capable of shifting upon some form of environmental stimulation rendering the PCCA suitable for many optical applications, including active photonic switching and sensory applications.
摘要:
Optically transparent composite materials in which solid solution inorganic nanoparticles are dispersed in a host matrix inert thereto, wherein the nanoparticles are doped with one or more active ions at a level up to about 60 mole % and consist of particles having a dispersed particle size between about 1 and about 100 nm, and the composite material with the nanoparticles dispersed therein is optically transparent to wavelengths at which excitation, fluorescence or luminescence of the active ions occur. Luminescent devices incorporating the composite materials are also disclosed.