Abstract:
Methods are disclosed for the production of anti-self antibodies and antibody fragments, being antibodies or fragments of a particular species of mammal which bind self antigens of that species. Methods comprise providing a library of replicable genetic display packages (rgdps), such as filamentous phage, each rgdp displaying at its surface member of a specific binding pair which is an antibody or antibody fragment, and each rgdp containing nucleic acid sequence derived from a species of mammal. The nucleic acid sequence in each rgdp encodes a polypeptide chain which is a component part of the sbp member displayed at the surface of that rgdp. Anti-self antibody fragments are selected by binding with a self antigen from the said species of mammal. The displayed antibody fragments may be scFv, Fd, Fab or any other fragment which has the capability of binding antigen. Nucleic acid libraries used may be derived from a rearranged V-gene sequences of unimmunised mammal. Synthetic or artificial libraries are described and shown to be useful.
Abstract:
A member of a specific binding pair (sbp) is identified by expressing DNA encoding a genetically diverse population of such sbp members in recombinant host cells in which the sbp members are displayed in functional form at the surface of a secreted recombinant genetic display package (rgdp) containing DNA encoding the sbp member or a polypeptide component thereof, by virtue of the sbp member or a polypeptide component thereof being expressed as a fusion with a capsid component of the rgdp. The displayed sbps may be selected by affinity with a complementary sbp member, and the DNA recovered from selected rgdps for expression of the selected sbp members. Antibody sbp members may be thus obtained, with the different chains thereof expressed, one fused to the capsid component and the other in free form for association with the fusion partner polypeptide. A phagemid may be used as an expression vector, with said capsid fusion helping to package the phagemid DNA. Using this method libraries of DNA encoding respective chains of such multimeric sbp members may be combined, thereby obtaining a much greater genetic diversity in the sbp members than could easily be obtained by conventional methods.
Abstract:
Methods are disclosed for the production of human self-antibodies and antibody fragments, which bind human antigens. Methods comprise providing a library of replicable genetic display packages (rgdps), such as filamentous phage, each rgdp displaying at its surface a member of a specific binding pair which is an antibody or antibody fragment, and each rgdp containing nucleic acid sequence derived from a species of mammal. The nucleic acid sequence in each rgdp encodes a polypeptide chain which is a component part of the sbp member displayed at the surface of that rgdp. Human antibodies or antibody fragments are selected by binding with human antigens. The displayed antibody fragments may be scFv, Fd, Fab or any other fragment which has the capability of binding to and is a human antigen. Nucleic acid libraries used may be derived from V-gene sequences of unimmunised humans. Part or all of the nucleic acid may be derived from oligonucleotide synthesis.
Abstract:
Methods are disclosed for the production of anti-self antibodies and antibody fragments, being antibodies or fragments of a particular species of mammal which bind self antigens of that species. Methods comprise providing a library of replicable genetic display packages (rgdps), such as filamentous phage, each rgdp displaying at its surface a member of a specific binding pair which is an antibody or antibody fragment, and each rgdp containing nucleic acid sequence derived from a species of mammal. The nucleic acid sequence in each rgdp encodes a polypeptide chain which is a component part of the sbp member displayed at the surface of that rgdp. Anti-self antibody fragments are selected by binding with a self antigen from the said species of mammal. The displayed antibody fragments may be scFv, Fd, Fab or any other fragment which has the capability of binding antigen. Nucleic acid libraries used may be derived from a rearranged V-gene sequences of unimmunised mammal. Synthetic or artificial libraries are described and shown to be useful.
Abstract:
A member of a specific binding pair (sbp) is identified by expressing DNA encoding a genetically diverse population of such sbp members in recombinant host cells in which the sbp members are displayed in functional form at the surface of a secreted recombinant genetic display package (rgdp) containing DNA encoding the sbp member or a polypeptide component thereof, by virtue of the sbp member or a polypeptide component thereof being expressed as a fusion with a capsid component of the rgdp. The displayed sbps may be selected by affinity with a complementary sbp member, and the DNA recovered from selected rgdps for expression of the selected sbp members. Antibody sbp members may be thus obtained, with the different chains thereof expressed, one fused to the capsid component and the other in free form for association with the fusion partner polypeptide. A phagemid may be used as an expression vector, with said capsid fusion helping to package the phagemid DNA. Using this method libraries of DNA encoding respective chains of such multimeric sbp members may be combined, thereby obtaining a much greater genetic diversity in the sbp members than could easily be obtained by conventional methods.
Abstract:
A lamp light director reflector (LLDR) for being installed on a lamp having a light bulb including a housing having a convex exterior surface and a convex reflective interior surface; a hole on a top portion of the exterior surface configured to accommodate a harp nut base of the lamp therein, in a first position; and a slit on the top portion of the exterior surface configured to accommodate a harp of the lamp therein, in a second position wherein the housing is configured to be installed on the lamp such that the reflective interior surface faces the light bulb of the lamp. The first position is at a top of the lamp harp resting upon the harp, and the lamp harp passes through the slit in the second position resting atop the lamp bulb.
Abstract:
Methods are disclosed for the production of anti-self antibodies and antibody fragments, being antibodies or fragments of a particular species of mammal which bind self antigens of that species. Methods comprise providing a library of replicable genetic display packages (rgdps), such as filamentous phage, each rgdp displaying at its surface member of a specific binding pair which is an antibody or antibody fragment, and each rgdp containing nucleic acid sequence derived from a species of mammal. The nucleic acid sequence in each rgdp encodes a polypeptide chain which is a component part of the sbp member displayed at the surface of that rgdp. Anti-self antibody fragments are selected by binding with a self antigen from said species of mammal. The displayed antibody fragments may be scFv, Fd, Fab or any other fragment which has the capability of binding antigen. Nucleic acid libraries used may be derived from rearranged V-gene sequences of unimmunised mammal. Synthetic or artificial libraries are described and shown to be useful.
Abstract:
Methods are disclosed for the production of anti-self antibodies and antibody fragments, being antibodies or fragments of a particular species of mammal which bind self antigens of that species. Methods comprise providing a library of replicable genetic display packages (rgdps), such as filamentous phage, each rgdp displaying at its surface member of a specific binding pair which is an antibody or antibody fragment, and each rgdp containing nucleic acid sequence derived from a species of mammal. The nucleic acid sequence in each rgdp encodes a polypeptide chain which is a component part of the sbp member displayed at the surface of that rgdp. Anti-self antibody fragments are selected by binding with a self antigen from said species of mammal. The displayed antibody fragments may be scFv, Fd, Fab or any other fragment which has the capability of binding antigen. Nucleic acid libraries used may be derived from rearranged V-gene sequences of unimmunised mammal. Synthetic or artificial libraries are described and shown to be useful.
Abstract:
A member of a specific binding pair (sbp) is identified by expressing DNA encoding a genetically diverse population of such sbp members in recombinant host cells in which the sbp members are displayed in functional form at the surface of a secreted recombinant genetic display package (rgdp) containing DNA encoding the sbp member or a polypeptide component thereof, by virtue of the sbp member or a polypeptide component thereof being expressed as a fusion with a capsid component of the rgdp. The displayed sbps may be selected by affinity with a complementary sbp member, and the DNA recovered from selected rgdps for expression of the selected sbp members. Antibody sbp members may be thus obtained, with the different chains thereof expressed, one fused to the capsid component and the other in free form for association with the fusion partner polypeptide. A phagemid may be used as an expression vector, with said capsid fusion helping to package the phagemid DNA. Using this method libraries of DNA encoding respective chains of such multimeric sbp members may be combined, thereby obtaining a much greater genetic diversity in the sbp members than could easily be obtained by conventional methods.
Abstract:
Methods are disclosed for the production of anti-self antibodies and antibody fragments, being antibodies or fragments of a particular species of mammal which bind self-antigens of that species. Methods comprise providing a library of replicable genetic display packages (rgdps), such as filamentous phage, each rgdp displaying at its surface a member of a specific binding pair which is an antibody or antibody fragment, and each rgdp containing nucleic acid sequence derived from a species of mammal. The nucleic acid sequence in each rgdp encodes a polypeptide chain which is a component part of the sbp member displayed at the surface of that rgdp. Anti-self antibody fragments are selected by binding with a self antigen from the said species of mammal. The displayed antibody fragments may be scFv, Fd, Fab or any other fragment which has the capability of binding antigen. Nucleic acid libraries used may be derived from a rearranged V-gene sequences of unimmunised mammal. Synthetic or artificial libraries are described and shown to be useful.