Abstract:
Systems, methods and circuits for regulator minimum load control. In one particular case, a system is provided that includes a load control circuit and a switched load. The load control circuit includes a reference current, and a sense current representative of a load current. In addition, the load control circuit includes a comparator circuit that drives a control signal in response to a comparison between the reference current and the sense current. The switched load is electrically coupled to a load voltage signal to provide loading to the load voltage signal. The switched load is operable to switch between a first loading factor and a second loading factor in response to the control signal.
Abstract:
Provided is a symmetrical filter that uses a single comparator. In addition to a voltage divider, a current regulator, and a comparator, the filter of the invention provides control logic that turns on or off a pull up switch and/or pull down switch in order to fully charge or fully discharge a capacitor. Accordingly, in one aspect, the invention is a control logic for a symmetrical filter. Furthermore, timing logic is provided to provide for a more rigorous symmetrical filter performance.
Abstract:
An integrated circuit (10) is disclosed comprising a fundamental frequency oscillator comprising a reference node (32) whose voltage varies between a high threshold and a low threshold. The fundamental frequency oscillator is operable to generate a first output at the fundamental frequency on a first output node (36). The integrated circuit (10) also comprises a circuit (C2) coupled to the reference node. The circuit (C2) is operable to sense the voltage at the reference node (32), to determine when the voltage exceeds an intermediate threshold between the high threshold and the low threshold, and to generate a second output in response to the determination. The integrated circuit (10) also comprises logic (40) coupled to the circuit (C2) and load circuitry (50) coupled to the logic (40). The logic (40) is operable to generate an output signal at an output frequency greater than the fundamental frequency in response to the second output and the first output.
Abstract:
A internal circuitry protection scheme which protects on-IC circuitry when an external pin is shorted to a higher than normal voltage. The disclosed solution eliminates cross-talk due to a parasitic NPN.
Abstract:
A switch mode regulator circuit is provided to facilitate the conversion from one voltage level to another in a substantially power lossless manner. The circuit is particularly advantageous in instances where the power supply can be operable in a discontinuous mode, as inductor-capacitor oscillatory transients ("ringing"), along with its associated voltage spikes at the associated output transistor source, can be avoided. Such transients and their associated voltages are avoided by clamping the gate-source voltage on the circuit's output NMOS transistor over the entire positive operation voltage range.
Abstract:
In accordance with the present invention, an output current limit circuit for protecting a power MOS output device of an integrated circuit from an excessive drain current comprises a power MOS device 110, sensing circuitry 30 to sense a predetermined trigger current, and limitation circuitry 20 to reduce a gate-source voltage on MOS output device 110 to a predetermined approximately fixed value. A drain current I.sub.D flows through power MOS device 110 from output terminal 102 in response to the gate-source voltage. A short circuit condition may allow an excessive amount of drain current I.sub.D to flow through output terminal 102. The gate-source voltage is reduced in response to sensing the trigger current. Reducing the gate-source voltage raises a drain-source resistance of MOS device 110 and reduces drain current I.sub.D so that MOS device 110 is not damaged by the short circuit condition.
Abstract:
An EEPROM cell (10) formed on a substrate (18) using conventional process steps is provided. The cell (10) includes first (12) and second (14) conductive regions in the substrate (18) below the substrate's outer surface (28), and the first (12) and second (14) conductive regions are laterally displaced from one another by a predetermined distance (32). The cell (10) also includes an insulating layer (20) outwardly from the outer surface (28) of the substrate (18) positioned so that its edges are substantially in alignment between the first (12) and second (14) conductive regions. The cell (10) further includes a floating gate layer (22) outwardly from the insulating layer (20) and in substantially the same shape as the insulating layer (20). The cell (10) also includes a diffusion region (24 or 26) that extends laterally from at least one of the first (12) and second (14) conductive regions so as to overlap with the insulating layer (20). The diffusion region (24 or 26) provides a source of charge for placement on the floating gate layer (22) when programming the EEPROM cell (10).
Abstract:
An optimized power output clamping structure, includes a power output transistor having a first breakdown voltage and a breakdown structure having a second breakdown voltage coupled to the power output transistor. The second breakdown voltage is less than the first breakdown voltage and follows the first breakdown voltage across all temperature and semiconductor process variations. This feature allows a reduction in breakdown voltage guardbanding and increases output structure reliability. A method of protecting a circuit from inductive flyback is also disclosed. The method includes the steps of driving an inductive load with drive circuitry, turning off the inductive load, and clamping an inductive voltage at a voltage magnitude that protects the drive circuitry from breakdown across all temperature and processing variations.
Abstract:
A circuit and method for providing a low drop out voltage regulator. A source follower circuit is provided having a transistor (MD1) with an output terminal for driving a load at its source terminal and a voltage supply coupled to the drain terminal. At least one diode (D1) is coupled between the gate terminal and a ground reference to provide a predetermined voltage at the gate of the transistor (MD1). A voltage multiplier circuit is provided having an input (IN) for receiving an oscillating input voltage and a charge storage device (39) coupled between the oscillating input and a voltage reference (Vref), and being further coupled in series with the voltage reference and then to the gate terminal of the transistor (MD1). The oscillating input voltage is used to charge the charge storage device (39) to a voltage approximately equal to the voltage reference. When the supply voltage falls below the normal level, the series combination of the voltage reference and the charge storage device provides a multiplied voltage at the gate of the transistor, for example a voltage of twice the reference voltage. This high gate voltage keeps the output at the source of the transistor at a high voltage that is approximately equal to the supply voltage, such that the circuit provides a low drop out voltage under low supply voltage conditions.
Abstract:
The present invention includes a MOS device (100) that has a P-type substrate (102) and an N-type drain region (104) formed within the substrate (102). An annular N-type source region (106) generally surrounds the drain region (104). The source region (106) serves as both the source for the MOS device (100) and a sacrificial collector guard ring for an electrostatic discharge protection circuit. An annular gate region (110) generally surrounds the drain region (104) and is electrically insulated from the drain region (104) and electrically connected to the source region (106). An annular P-type bulk region (108) generally surrounds the source region (106) and is electrically connected to the source region (106).