摘要:
Embodiments of the present disclosure relate to real-time digitally signing of a virtual object. The real-time digital signing of a virtual object is provided in a multi-user real-time context between signor and signee that enables the signor to perform the real-time digital signing and the signee to visually experience the real-time signing. The real-time digital signing may be provided to the signor and signee in parallel, and/or one or more additional viewers taking part in the digital signing. Upon completion of the digital signing, some embodiments in near-real-time generate a digital asset that is linked to the virtual object modified with the digital signature, which may be assigned to and/or otherwise linked with the signee for subsequent retrieval and/or use.
摘要:
A nanostructured article comprises a matrix and a nanoscale dispersed phase. The nanostructured article has a random nanostructured anisotropic surface.
摘要:
Antireflective films are described comprising a light transmissive substrate and a low refractive index layer disposed on the light transmissive substrate. The low refractive index layer comprises the reaction product of polymerizable resin composition comprising at least 20 wt-% fumed silica. In one embodiment, the polymerizable resin is ethylenically unsaturated. In a favored embodiment, the low refractive index layer increases in porosity from the light transmissive substrate interface to an opposing porous surface.
摘要:
A process for etching semiconductors, such as II-VI or III-V semiconductors is provided. The method includes sputter etching the semiconductor through an etching mask using a nonreactive gas, removing the semiconductor and cleaning the chamber with a reactive gas. The etching mask includes a photoresist. Using this method, light-emitting diodes with light extracting elements or nano/micro-structures etched into the semiconductor material can be fabricated.
摘要:
Superhydrophobic films (110) and methods of making such films are disclosed. More specifically, superhydrophobic films having microstructured (102) and nanofeatured (104) surfaces, constructions utilizing such films, and methods of making such films are disclosed.
摘要:
Superhydrophobic films (200, 400) are disclosed. More particularly, durable superhydrophobic films (200, 400) having discrete flat faces (206, 406) spaced apart by valleys (208, 408) where the valleys and faces are covered by nanostructures or nanoparticles (424) are disclosed. Various methods of making such films are also disclosed.
摘要:
Optical films for enhancing light extraction from self-emissive pixelated OLEDs, without introducing significant pixel blur, are disclosed. The extraction films include a flexible carrier film, and a first and second layer carried by the carrier film. The first layer has a nanovoided morphology, includes a polymer binder, and may have a refractive index less than 1.35 or 1.3. An embedded structured surface of light extraction elements is formed between the first and second layers. The extraction film includes a major coupling surface for attachment to an outer surface of the light source. The film is configured such that a land portion between the structured surface and the major coupling surface is thinner than a specified amount, e.g., less than 50, 25, or 10 microns, or less than a thickness of the carrier film.
摘要:
A light extraction film laminated to a glass substrate for organic light emitting diode (OLED) devices. The light extraction film includes a flexible substantially transparent film, a low index nanostructured layer applied to the film, and a high index planarizing backfill layer applied over the nanostructured layer. A glass substrate is laminated to the flexible substantially transparent film on a side opposite the nanostructured layer and including an ultra-low index region between the film and the glass substrate. The ultra-low index region is used to reduce optical losses occurring with the glass substrate.
摘要:
A second-harmonic generation nonlinear frequency converter includes a nonlinear optical crystal. The nonlinear optical crystal includes a plurality of sections. The sections connect to each other in sequence, and each section has a phase different from others. Each of the phases includes a positive domain and a negative domain. Each of the sections includes a plurality of quasi-phase-matching structures. The quasi-phase-matching structures connect to each other in sequence and have the same phase in one section.