摘要:
Semiconductor memory devices having strapping contacts are provided, the devices include cell regions and strapping regions between adjacent cell regions in a first direction. Active patterns, extending in the first direction throughout the cell regions and strapping regions, are spaced apart from one another in a second direction intersecting the first direction. First interconnection lines, extending in the first direction throughout the cell regions and strapping regions, are spaced apart from one another in the second direction while overlapping with the active patterns. Second interconnection lines, extending in the second direction, intersect the active patterns and first interconnection lines in the cell regions. The second interconnection lines are spaced apart from one another in the first direction. Memory cells are positioned at intersection portions of the first and second interconnection lines in the cell regions. The active patterns contact the first interconnection lines through strapping contacts in the strapping regions.
摘要:
A method of programming a one-time programmable device is provided. A switching device disposed in a substrate is turned on and a program current is applied to a fuse electrically connected to the switching device, thereby cutting the fuse. The fuse includes a first electrode electrically connected to the switching device, a second electrode spaced apart from the first electrode, and a chalcogenide pattern disposed between the first and second electrodes. Related one-time programmable devices, phase change memory devices and electronic systems are also disclosed.
摘要:
Semiconductor memory devices having strapping contacts with an increased pitch are provided. The semiconductor memory devices include cell regions and strapping regions between adjacent cell regions in a first direction on a semiconductor substrate. Active patterns extend in the first direction throughout the cell regions and strapping regions and are spaced apart from one another in a second direction intersecting the first direction. First interconnection lines extend in the first direction throughout the cell regions and the strapping regions and are spaced apart from one another in the second direction while overlapping with the active patterns. Second interconnection lines extend in the second direction to intersect the active patterns and the first interconnection lines in the cell regions. The second interconnection lines are spaced apart from one another in the first direction. Memory cells are positioned at intersection portions of the first and second interconnection lines in the cell regions. Strapping contacts are in the strapping regions and configured such that the active patterns contact with the first interconnection lines through the strapping contacts.
摘要:
A PRAM device may include an insulating interlayer, a diode, a metal silicide layer, a barrier spacer, an outer spacer, a lower electrode, a phase-changeable layer and an upper electrode. The insulating interlayer may be formed on a substrate. The insulating interlayer may have a contact hole. The diode may be formed in the contact hole. The metal silicide layer may be formed on the diode. The barrier spacer may be formed on an upper surface of the metal silicide layer and a side surface of the contact hole. The outer spacer may be formed on the barrier spacer. The lower electrode may be formed on the barrier spacer. The phase-changeable layer may be formed on the lower electrode. The upper electrode may be formed on the phase-changeable layer.
摘要:
A method of programming a one-time programmable device is provided. A switching device disposed in a substrate is turned on and a program current is applied to a fuse electrically connected to the switching device, thereby cutting the fuse. The fuse includes a first electrode electrically connected to the switching device, a second electrode spaced apart from the first electrode, and a chalcogenide pattern disposed between the first and second electrodes. Related one-time programmable devices, phase change memory devices and electronic systems are also disclosed.
摘要:
According to one embodiment, at least a portion of the phase change material including a first crystalline phase is converted to one of a second crystalline phase and an amorphous phase. The second crystalline phase transitions to the amorphous phase more easily than the first crystalline phase. For example the first crystalline phase may be a hexagonal closed packed structure and the first crystalline phase may be a face centered cubic structure.
摘要:
A switching device disposed in a substrate is turned on and a program current is applied to a fuse electrically connected to a switching device, thereby cutting the fuse. The fuse includes a first electrode electrically connected to the switching device, a second electrode spaced apart from the first electrode, and a chalcogenide pattern disposed between the first and second electrodes.
摘要:
According to one embodiment, at least a portion of the phase change material including a first crystalline phase is converted to one of a second crystalline phase and an amorphous phase. The second crystalline phase transitions to the amorphous phase more easily than the first crystalline phase. For example, the first crystalline phase may be a hexagonal closed packed structure, and the first crystalline phase may be a face centered cubic structure.
摘要:
According to one embodiment, at least a portion of the phase change material including a first crystalline phase is converted to one of a second crystalline phase and an amorphous phase. The second crystalline phase transitions to the amorphous phase more easily than the first crystalline phase. For example the first crystalline phase may be a hexagonal closed packed structure and the first crystalline phase may be a face centered cubic structure.
摘要:
According to one embodiment, at least a portion of the phase change material including a first crystalline phase is converted to one of a second crystalline phase and an amorphous phase. The second crystalline phase transitions to the amorphous phase more easily than the first crystalline phase. For example, the first crystalline phase may be a hexagonal closed packed structure, and the first crystalline phase may be a face centered cubic structure.