摘要:
A semiconductor device and a manufacturing method thereof are provided which enable reduction and enhanced stability of contact resistance between the back surface of a nitride substrate and an electrode formed thereover. A nitride semiconductor device includes an n-type GaN substrate (1) over which a semiconductor element is formed, and an n-electrode (10) as a metal electrode formed over the back surface of the GaN substrate (1). A connection layer (20) is formed between the GaN substrate (1) and the n-electrode (10), and the connection layer (20) is composed of a material that is other than nitride semiconductors and that contains silicon.
摘要:
A substrate surface (10S) is thermally oxidized to form an oxide film. The oxide film is patterned so that the substrate surface (10S) in an active region is exposed. An oxide film (20) is thereby provided. An exposed substrate surface (10S) is thermally oxidized, to form a thermal oxide film. This thermal oxide film is thereafter removed at least in an element forming region. A silicon film (41) is epitaxially grown on the exposed substrate surface (10S). Thereafter the silicon film (41) is polished by CMP to an extent that an upper surface of the silicon film after polishing is not more than an upper surface of the oxide film (20) in height. Next, the surface of the silicon film is thermally oxidized to form a thermal oxide film. After ion implantation of various types, this thermal oxide film is removed.
摘要:
A semiconductor device less susceptible to inverse narrow channel effect and its manufacturing method are provided. A silicon nitride film (13) is adopted as element isolation regions; the silicon nitride film (13) has a smaller etch rate than a sacrificial silicon oxide film (7) which serves as a sacrificial layer during ion implantation (8). This prevents formation of recesses in the silicon nitride film (13) during the removal of the sacrificial silicon oxide film (7), which weakens the strength of the electric fields at the gate edges. Weakening the strength of the electric fields at the gate edges suppresses the inverse narrow channel effect, so that the MOS transistor offers a characteristic closer to a characteristic in which the threshold voltage keeps a constant value independently of the channel width. Thus an MOS transistor having a good characteristic can be manufactured.
摘要:
A major object of the present invention is to provide an improved semiconductor device so as to be able to reduce gate electric field concentration at a channel edge, suppress decrease in the threshold during MOSFET operation and reduce the leakage current. A gate insulation film is formed on a semiconductor substrate. A gate electrode is formed on the semiconductor substrate with the gate insulation film therebetween. The dielectric constant of the gate insulation film is not uniform in the surface.
摘要:
A semiconductor device and manufacturing method capable of forming shallow extension regions in insulated-gate transistors. A side wall material containing about 1 to 20% of phosphorus, such as PSG, is deposited on the sides of an opening to a film thickness of tens of nanometers to about 100 nm and etched back to form phosphorus-containing side walls respectively adjacent to boron-containing side walls. An interlayer insulating film of silicon nitride etc. is then formed on the silicon nitride film. A thermal process performed during formation of the interlayer insulating film forms N-type extension regions in the NMOS region through a diffusion where phosphorus contained in the phosphorus-containing side walls serves as the diffusion source and P-type extension region in the PMOS region through a diffusion where boron contained in the boron-containing side walls serves as the diffusion source.
摘要:
A semiconductor device and manufacturing method capable of forming shallow extension regions in insulated-gate transistors. A side wall material containing about 1 to 20% of phosphorus, such as PSG, is deposited on the sides of an opening to a film thickness of tens of nanometers to about 100 nm and etched back to form phosphorus-containing side walls respectively adjacent to boron-containing side walls. An interlayer insulating film of silicon nitride etc. is then formed on the silicon nitride film. A thermal process performed during formation of the interlayer insulating film forms N-type extension regions in the NMOS region through a diffusion where phosphorus contained in the phosphorus-containing side walls serves as the diffusion source and P-type extension region in the PMOS region through a diffusion where boron contained in the boron-containing side walls serves as the diffusion source.
摘要:
A P-type electrode material is provided on a top surface of a P-type contact layer. The P-type electrode material is formed with an AuGa film, an Au film, a Pt film, and an Au film. The AuGa film is provided on the P-type contact layer. The Au film is provided on the AuGa film. The Pt film is provided on the Au film. The Au film is provided on the Pt film. With this, a nitride semiconductor device having a P-type electrode which can decrease a contact resistance between a P-type contact layer and the P-type electrode is obtained.
摘要:
A nitride semiconductor device with a p electrode having no resistance between itself and other electrodes, and a method of manufacturing the same are provided. A p electrode is formed of a first Pd film, a Ta film, and a second Pd film, and on a p-type contact layer of a nitride semiconductor. On the second Pd film, a pad electrode is formed. The second Pd film is formed on the entire upper surface of the Ta film which forms part of the p electrode, and serves as an antioxidant film that prevents oxidation of the Ta film. Preventing oxidation of the Ta film, the second Pd film can reduce the resistance that may exist between the p electrode and the pad electrode, thereby preventing a failure in contact between the p electrode and the pad electrode and providing the p electrode with low resistance.
摘要:
Semiconductor devices, in particular nitride semiconductor devices for use in the manufacture of laser diodes, prevent peeling-off of the electrode, and at the same time reduces the complexity of processes and a reduction in yield. A nitride semiconductor device according to the invention includes a P-type nitride semiconductor layer with a ridge on its surface, an SiO2 film covering at least the side face of the ridge, an adherence layer formed on a surface of the SiO2 film and composed mainly of silicon, and a P-type electrode formed on the upper surface of the ridge and on a surface of the adherence layer.
摘要:
An SiO2 film is formed on a semiconductor layer stack, the SiO2 film having a thickness da and an etch rate Ra in buffered (BHF). A waveguide ridge with the SiO2 film thereon is formed using a resist pattern 76. An SiN film is formed on top and both sides of the waveguide ridge, while leaving the resist pattern in place, the SiN film having a thickness db and an etch rate Rb in BHF, where 1