Abstract:
A multiple independent narrow-channel wireless network and method for transmitting and received data over a wireless network using a fragmented frequency spectrum. The system and method uses a plurality of narrow wireless channels obtained from splitting a wide wireless channel. Each narrow channel performs sending, receiving, and carrier sensing. Moreover, each narrow channel is independent such that data can be sent or received without any interference from other narrow channels and without synchronization. Embodiments of the system and method include a compound radio having a compound receiver and a compound transmitter. The compound transmitter includes an inter-radiolet symbol synchronization module, to permit use of a single inverse fast Fourier transform block, and a dynamically configurable filter array, to mitigate leakage between channels. The compound receiver uses fraction data rate processing to optimize efficiency. A throughput maximal metric technique is used to determine its frequency of operation in white spaces.
Abstract:
The claimed subject matter provides a method for wireless communications. The method includes transmitting, by a first node in a wireless network, a first preamble. The method also includes detecting, in parallel with transmitting the first preamble, a transmission of a second preamble. A second node in the wireless network transmits the second preamble. Additionally, the method includes determining a later start between the transmission of the first preamble and the transmission of the second preamble. The method further includes terminating transmission of the first preamble the determining indicates that the transmission of the first preamble started after the transmission of the second preamble.
Abstract:
Embodiments of the invention are generally directed to systems, methods, and apparatuses for clock enable (CKE) coordination. In some embodiments, a memory controller includes logic to predict whether a scheduled request will be issued to a rank. The memory controller may also include logic to predict whether a scheduled request will not be issued to the rank. In some embodiments, the clock enable (CKE) is asserted or de-asserted to a rank based, at least in part, on the predictions. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a method of analyzing an extensible markup language (XML) file, generating structural information for the XML file, and incorporating the structural information into the XML file. The structural information may correspond to a hierarchy of the file and may further include size information corresponding to elements of the file. In such manner, the structural information may be transmitted with the XML file and used to aid a receiver of the file in parsing. Other embodiments are described and claimed.
Abstract:
The claimed subject matter provides a method for wireless communications. The method includes transmitting, by a first node in a wireless network, a first preamble. The method also includes detecting, in parallel with transmitting the first preamble, a transmission of a second preamble. A second node in the wireless network transmits the second preamble. Additionally, the method includes determining a later start between the transmission of the first preamble and the transmission of the second preamble. The method further includes terminating transmission of the first preamble the determining indicates that the transmission of the first preamble started after the transmission of the second preamble.
Abstract:
The simultaneous localization and RF modeling technique pertains to a method of providing simultaneous localization and radio frequency (RF) modeling. In one embodiment, the technique operates in a space with wireless local area network coverage (or other RF transmitters). Users carrying Wi-Fi-enabled devices traverse this space while the mobile devices record the Received Signal Strength (RSS) measurements corresponding to access points (APs) in view at various unknown locations and report these RSS measurements, as well as nay other available location fix to a localization server. A RF modeling algorithm runs on the server and is used to estimate the location of the APs using the recorded RSSI measurements and any other available location information. All of the observations are constrained by the physics of wireless propagation. The technique models these constraints and uses a genetic algorithm to solve them, thereby providing an absolute location of the mobile device.
Abstract:
Embodiments of the invention are generally directed to systems, methods, and apparatuses for rank coordination. In some embodiments, a host includes rank coordination logic. The rank coordination logic may include performance measurement logic to measure a performance of a memory channel and dwell period control logic to select a length of a dwell period based, at least in part, on the performance of the memory channel. Other embodiments are described and claimed.
Abstract:
In some embodiments, estimating a duration of an idle period gap of a lower power state of a resource by exponentially smoothing successive idle period gaps. Other embodiments are described and claimed.
Abstract:
Embodiments of the invention are generally directed to systems, methods, and apparatuses for clock enable (CKE) coordination. In some embodiments, a memory controller includes logic to predict whether a scheduled request will be issued to a rank. The memory controller may also include logic to predict whether a scheduled request will not be issued to the rank. In some embodiments, the clock enable (CKE) is asserted or de-asserted to a rank based, at least in part, on the predictions. Other embodiments are described and claimed.
Abstract:
A wireless data transmission method includes providing a plurality of radio frequency transmitters. A receiver is provided to receive transmissions from the transmitters. A data format including a plurality of transmission time slots is defined. A first subset of the plurality of transmitters that are apt to send the transmissions simultaneously is determined. Each of the transmitters in the first subset is assigned to a different one of the time slots. A second subset of the plurality of transmitters that are apt to send the transmissions non-simultaneously is determined. Each of the transmitters in the second subset is assigned to a same one of the time slots. The transmitters are used to transmit the transmissions to the receiver in accordance with the assigning steps.