PROCESS FOR PREPARING CRYSTALLINE ELECTRODE MATERIALS AND MATERIALS OBTAINED THEREFROM
    1.
    发明申请
    PROCESS FOR PREPARING CRYSTALLINE ELECTRODE MATERIALS AND MATERIALS OBTAINED THEREFROM 有权
    制备晶体电极材料的方法及其获得的材料

    公开(公告)号:US20150118561A1

    公开(公告)日:2015-04-30

    申请号:US14399233

    申请日:2013-05-28

    摘要: There is provided a process for preparing a crystalline electrode material, the process comprising: providing a liquid bath comprising the electrode material in a melted state; and introducing a precursor of the electrode material into the liquid bath, wherein the electrode material comprises lithium, a metal and phosphate. There is also provided a crystalline electrode material, comprising lithium substituted by less than 0.1 atomic of Na or K; Fe and/or Mn, substituted by less than 0.1 atomic ratio of: (a) Mg, Ca, Al and B, (b) Nb, Zr, Mo, V and Cr, (c) Fe(III), or (d) any combinations thereof; and PO4, substituted by less than 20% atomic weight of an oxyanion selected from SO4, SiO4, BO4, P2O7, and any combinations thereof, the material being in the form of particles having a non-carbon and non-olivine phase on at least a portion of the surface thereof.

    摘要翻译: 提供了一种制备结晶电极材料的方法,该方法包括:提供包含处于熔化状态的电极材料的液浴; 并将电极材料的前体引入液槽中,其中电极材料包括锂,金属和磷酸盐。 还提供了一种结晶电极材料,其包含被小于0.1原子的Na或K取代的锂; (a)Mg,Ca,Al和B,(b)Nb,Zr,Mo,V和Cr,(c)Fe(III)或(d)中的Fe和/或Mn )其任何组合; 和PO 4,由少于20%原子量的选自SO 4,SiO 4,BO 4,P 2 O 7的氧阴离子及其任何组合取代,该材料至少具有非碳和非橄榄石相的颗粒形式 其表面的一部分。

    THERMOMETRIC METALLURGY MATERIALS
    7.
    发明申请

    公开(公告)号:US20180169751A1

    公开(公告)日:2018-06-21

    申请号:US15844277

    申请日:2017-12-15

    IPC分类号: B22F1/00 G01N3/40 G01N25/18

    摘要: A thermometric powder metal material for testing to replicate an actual powder material during use of the actual powder metal material in an internal combustion engine is provided. The thermometric powder metal material includes pores and has a decrease in hardness as a function of temperature according to the following equation: D Hardness/D Temperature=>0.5 HV/° C. The properties of the actual powder metal material, when the actual powder metal is used in an internal combustion engine, can be estimated using the thermometric powder metal material by first adjusting the thermal conductivity of the thermometric powder metal material or controlling the porosity of the thermometric powder metal material to replicate the actual powder metal material, and then subjecting thermometric powder metal material to an engine test. For example, the thermal conductivity can be adjusted by infiltrating the thermometric powder metal material with copper.