摘要:
An ion beam blocking array configured to provide a mechanical means for adjusting the beam current profile of an ion ribbon beam by blocking the beam current at one or more locations across the ribbon beam. The ion beam blocking array includes a drive motor, an axle connected to the drive motor and a plurality of profile wheels disposed along the axle where each of the profile wheels is configured to rotate when the axle rotates. Each of the profile wheels is disposed across a width of the ribbon beam and has a position corresponding to a location along the width of the beam.
摘要:
A slit assembly for use in a charged particle beam system wherein a charged particle beam is directed along a beam path. The slit assembly may be a mass resolving slit assembly for an ion implanter. The slit assembly includes first and second cylinders spaced apart from each other. Opposing surfaces of the first and second cylinders adjacent to the beam path define a slit for passing the charged particle beam. The first and second cylinders have first and second central axes, respectively. The slit assembly further includes a drive system for rotating the first cylinder about the first central axis and for rotating the second cylinder about the second central axis. The slit assembly provides low contamination and a long operating life. The slit assembly may include a system for adjusting the width of the slit. The slit assembly may further include a cooling system for controlling the temperatures of the first and second cylinders.
摘要:
An ion source includes an arc chamber housing defining an arc chamber having an extraction aperture, and a wiper. The wiper is positioned within the arc chamber in a parked position and configured to be driven from the parked position to operational positions to clean the extraction aperture. A cleaning sub-assembly for an ion source includes a wiper configured to be positioned within an arc chamber of the ion source when in a parked position and driven from the parked position to operational positions to clean an extraction aperture of the ion source.
摘要:
An ion source includes an arc chamber housing defining an arc chamber having an extraction aperture, and a wiper assembly comprising a wiper positioned outside the arc chamber in a parked position and configured to be driven from the parked position to operational positions to clean the extraction aperture. A wiper assembly for an ion source includes a wiper configured to be positioned outside an arc chamber of the ion source when in a parked position and driven from the parked position to operational positions to clean an extraction aperture of the ion source.
摘要:
An ion source includes an arc chamber housing defining an arc chamber having an extraction aperture, and a wiper. The wiper is positioned within the arc chamber in a parked position and configured to be driven from the parked position to operational positions to clean the extraction aperture. A cleaning sub-assembly for an ion source includes a wiper configured to be positioned within an arc chamber of the ion source when in a parked position and driven from the parked position to operational positions to clean an extraction aperture of the ion source.
摘要:
An ion implanter has a source arc chamber including a conductive end wall at a repeller end of the arc chamber, the end wall having a central portion surrounding an opening. A ceramic insulator is secured to an outer surface of the end wall, such as by peripheral screw threads engaging mating threads at the periphery of a recessed area of the end wall. A conductive repeller has a narrow shaft secured to the insulator and extending through the end wall opening, and a body disposed within the source arc chamber adjacent to the end wall. The end wall, insulator and repeller are configured to form a continuous vacuum gap between the central portion of the end wall and (i) the repeller body, (ii) the repeller shaft, and (iii) the insulator. The insulator interior surface can have a ridged cross section.
摘要:
An apparatus and method for producing electrons in a plasma flood gun is disclosed. The apparatus includes an indirectly heated cathode (IHC) which is contained within a pre-fabricated cartridge. This cartridge can be readily replaced in a plasma flood gun. In addition, the use of an IHC reduces the amount of contaminants that are injected into the workpiece or wafer.
摘要:
A technique improving performance and lifetime of indirectly heated cathode ion sources is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for improving performance and lifetime of an indirectly heated cathode (IHC) ion source in an ion implanter. The method may comprise maintaining an arc chamber of the IHC ion source under vacuum during a maintenance of the ion implanter, wherein no gas is supplied to the arc chamber. The method may also comprise heating a cathode of the IHC ion source by supplying a filament with a current. The method may further comprise biasing the cathode with respect to the filament at a current level of 0.5-5 A without biasing the arc chamber with respect to the cathode. The method additionally comprise keeping a source magnet from producing a magnetic field inside the arc chamber.
摘要:
A flow sensor for regulating the air flow rate to a cooling system can be formed as a housing for channeling the flow through a retangular cavity and a one piece vane of bent metal strip which deflects and closes an electrical contact at a predetermined air flow rate and opens when the air flow rate falls below a preset threshold level.
摘要:
An indirectly heated cathode ion source includes an arc chamber housing that defines an arc chamber, an indirectly heated cathode and a filament for heating the cathode. The cathode may include an emitting portion having a front surface, a rear surface and a periphery, a support rod attached to the rear surface of the emitting portion, and a skirt extending from the periphery of the emitting portion. A cathode assembly may include the cathode, a filament and a clamp assembly for mounting the cathode and the filament in a fixed spatial relationship and for conducting electrical energy to the cathode and the filament. The filament is positioned in a cavity defined by the emitting portion and the skirt of the cathode. The ion source may include a shield for inhibiting escape of electrons and plasma from a region outside the arc chamber in proximity to the filament and the cathode.