Abstract:
An unreinforced, halogen-free polyamide moulding composition having the following composition: (A) 62-87% by weight of a partially aromatic, partially crystalline copolyamide having a melting point of 270° C. to 320° C. and made up of 100% by weight of diacid fraction composed of: 50-100% by weight of terephthalic acid (TPA) and/or naphthalenedicarboxylic acid; 0-50% by weight of isophthalic acid (IPA), and 100% by weight of diamine fraction; (B) 5-15% by weight of ionomer; (C) 8-18% by weight of flame retardants; (D) 0-5% by weight of additives; where the components (A)-(D) add up to 100% by weight.
Abstract:
What is described is a polyamide moulding material based on semicrystalline polyamides for production of LED housings or housing components with high strength, high long-term reflectivity and low blistering tendency. The polyamide moulding material proposed consists of the following components(A) 40 to 80% by weight of at least one semiaromatic polyamide based on at least 70 mol % of aromatic dicarboxylic acids and at least 70 mol % of aliphatic diamines having 4 to 18 carbon atoms and having a melting temperature in the range from 270° C. to 340° C.(B) 10 to 30% by weight of titanium dioxide particles(C) 5 to 20% by weight of glass fibres(D) 5-30% by weight of calcium carbonate.The percentages by weight of components (A) to (D) together add up to 100%, with the proviso that components (B), (C) and (D) meet the following conditions: (B)+(C)+(D)=20 to 60% by weight; weight ratio of (C)/(D) in the range from 0.25 to 1.5, where the polyamide moulding material may optionally comprise customary additives (E) in addition to components (A) to (D), and where the amount thereof is in addition to the sum of components (A) to (D).
Abstract:
A polyamide molding composition with the following constitution is described: (A) from 30 to 100% by weight of at least one 10T/6T copolyamide, where this is composed of (A1) from 40 to 95 mol % of 10T units, formed from the monomers 1,10-decanediamine and terephthalic acid (A2) from 5 to 60 mol % of 6T units, formed from the monomers 1,6-hexanediamine and terephthalic acid (B) from 0 to 70% by weight of reinforcing materials and/or fillers (C) from 0 to 50% by weight of additives and/or further polymers where the entirety of components A to C is 100%, with the proviso that in component (A) up to 30 mol %, based on the entirety of the dicarboxylic acids, of the terephthalic acid can have been replaced by other aromatic, aliphatic, or cycloaliphatic dicarboxylic acids, and with the proviso that in component (A) up to 30 mol % of 1,10-decanediamine and respectively 1,6-hexanediamine, based on the entirety of the diamines, can have been replaced by other diamines, and with the proviso that not more than 30 mol % in component (A), based on the entirety of the monomers, can have been formed via lactams or amino acids. Uses of this polyamide molding composition are moreover described, as also are processes for the preparation of these polyamide molding compositions.
Abstract:
The present invention relates to reinforced polyamide moulding materials which can be prepared from a polyamide blend and, for example, by compounding with cut fibres or continuous filaments on twin-screw extruders and have mechanical properties which are usually not compatible with one another, namely a combination of exceptionally high rigidity and strength and at the same time good toughness. Furthermore, a high heat distortion temperature (HDT) is achieved according to the invention. The thermoplastic polyamide moulding materials according to the invention are suitable for the production of mouldings or other semifinished products or finished articles, which can be produced, for example, by extrusion, injection moulding, direct methods or direct compounding, in which the compounded polyamide moulding material is processed directly by injection moulding, or other deformation techniques.
Abstract:
The invention concerns anti-static, peroxide-stable molding compounds on the basis of polyamides and/or polyesters, whereby the molding compounds are modified with very pure conductive carbon black with a low specific surface area. These anti-static molding compounds can be used for the production of injection-molded or extruded parts and the production of sheets or multi-layer hoses and tubes.
Abstract:
The invention relates to a reversible thermotropic plastics molding compound. Thermotropic molding compounds of this kind are used, amongst other things, for glass and coverings for shading and light/heat regulation in houses, cars, etc. The molding compound according to the invention consists of two compounds which are not thermodynamically miscible with one another. The first component consists of a plastics material, while the second component is not liquid-crystalline and has a refractive index which is the same as the first component in the transparent range and the temperature dependency of which is different from the temperature dependency of the refractive index of the first component. On raising the temperature, the transmission of the molding compound is thus altered.
Abstract:
A polyamide composition which is flame-retardant, includes several polyamides; and at least one flame-retarding additive which is at least one alkyl phosphonic acid compound having general formula (I):
Abstract:
A polyamide composition which is amorphous and transparent, which has reduced flammability, and which has reduced migration of flame-retardant additive so that it is film-free, includes at least one polyamide which contains cycloaliphatic monomer units and which is amorphous and transparent; and a flame-retardant additive which is present in an amount effective to reduced flammability of the polyamide composition, which is dissolved in the at least one polyamide, and which is at least one alkyl phosphonic acid compound having a general formula: ##STR1## wherein R and R' each represent, independent of each other, an alkyl group having from 1 to 4 carbon atoms, and x=0 or 1. An article molded from this composition is transparent, has reduced flammability, and has reduced migration of flame-retardant additive so that it is film-free.
Abstract:
A copolyamide composition and article molded therefrom, the molded article being transparent, being especially rigid, tough and cold impact resistant, having good resistance to solvents, and exhibiting negligible changes in mechanical properties in the conditioned state due to very low water absorption. The copolyamide composition including long-chain monomer building blocks and being comprised of from about 30 to about 96 parts by weight of at least one long-chain monomer which is suitable as a long-chain building block for a polyamide and which has from 9 to 12 carbon atoms; and from about 4 to about 70 parts by weight of precursor monomers for semiaromatic polyamides, which precursor monomers comprise at least one diamine, H.sub.2 N--R--NH.sub.2, and at least one aromatic dicarboxylic acid in an approximately equimolar ratio with one another, wherein R is a radical selected from the group consisting of a straight-chain radical having 2 to 12 carbon atoms, an aliphatic radical having 2 to 12 carbon atoms, an araliphatic radical having 7 to 12 carbon atoms, and a cycloaliphatic radical having 6 to 42 carbon atoms. Advantageously, up to about 15 mole percent of the at least one aromatic dicarboxylic acid can be replaced by a long-chain aliphatic dicarboxylic acid having 9 to 36 carbon atoms.
Abstract:
Disclosed is a polyamide molding compound having heat aging resistance for use as automobile or electrical components and composed of: (A) 27-84.99 wt % of a polyamide mixture consisting of (A1) at least one semiaromatic, semicrystalline polyamide having a melting point of 255° C. to 330° C., (A2) at least one caprolactam-containing polyamide that is different from (A1) and that has a caprolactam content of at least 50 wt %, where the total caprolactam content is 22-30 wt %, with respect to the polyamide mixture, (B) 15-65 wt % of at least one filler and reinforcing agent, (C) 0.01-3.0 wt % of at least one thermal stabilizer, and (D) 0-5.0 wt % of at least one additive, where the components (A)-(D) add up to 100 wt %.