Abstract:
The disclosed sensor chip includes a substrate and a moving member coupled to the substrate and disposed for movement relative to the substrate. The moving member moves relative to the substrate in a first direction and in a second direction in response to movement of the substrate. The first direction is different than the second direction. The moving member includes a plurality of receptors. The receptors are configured for selectively binding to a first measurand.
Abstract:
A system for detecting an analyte in a sample includes a resonant sensor that has a sensor surface coated with the capture agent. A plurality of magnetic particles, each of which is coated with a capture agent having an affinity for the analyte, is combined with the sample to form a plurality of analyte-particle complexes. The system also includes a transport arrangement for transporting the sample to the sensor surface, and a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of analyte-particle complexes that are bound to the sensor surface.
Abstract:
Illustrative embodiments of hybrid transparent conducting materials and applications thereof are disclosed. In one illustrative embodiment, a hybrid transparent conducting material may include a polycrystalline film and a plurality of conductive nanostructures randomly dispersed in the polycrystalline film. In another illustrative embodiment, a photovoltaic cell may include a transparent electrode comprising polycrystalline graphene that is percolation doped with metallic nanowires, where the metallic nanowires do not form a percolation network for charge carriers across the transparent electrode.
Abstract:
Illustrative embodiments of hybrid transparent conducting materials and applications thereof are disclosed. In one illustrative embodiment, a hybrid transparent conducting material may include a polycrystalline film and a plurality of conductive nanostructures randomly dispersed in the polycrystalline film. In another illustrative embodiment, a photovoltaic cell may include a transparent electrode comprising polycrystalline graphene that is percolation doped with metallic nanowires, where the metallic nanowires do not form a percolation network for charge carriers across the transparent electrode.
Abstract:
Methods for detecting viruses are provided. A plurality of particles, each of which is coated with a capture agent having an affinity for the virus, is combined with the sample to form a plurality of analyte-particle complexes. The system also includes a transport arrangement for transporting the sample to the sensor surface, and optionally a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of analyte-particle complexes that are bound to the sensor surface.
Abstract:
Methods for therapeutic drug monitoring are provided. A plurality of particles, each of which is coated with a capture agent capable of binding a therapeutic drug of choice is combined with the sample to form a plurality of therapeutic drug-particle complexes. The system also includes a transport arrangement for transporting the sample and/or particles to the sensor surface, and optionally a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of therapeutic drug-particle complexes that are bound to the sensor surface.
Abstract:
A system for detecting an analyte in a sample includes a resonant sensor that has a sensor surface coated with the capture agent. A plurality of magnetic particles, each of which is coated with a capture agent having an affinity for the analyte, is combined with the sample to form a plurality of analyte-particle complexes. The system also includes a transport arrangement for transporting the sample to the sensor surface, and a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of analyte-particle complexes that are bound to the sensor surface.
Abstract:
Methods for detecting estradiol and metabolites thereof in a sample are provided. A plurality of particles, each of which is coated with a capture agent having an affinity for estradiol, is combined with the sample to form a plurality of estradiol-particle complexes. The system also includes a transport arrangement for transporting the sample and/or particles to the sensor surface, and optionally a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of estradiol-particle complexes that are bound to the sensor surface.
Abstract:
Methods for detecting viruses are provided. A plurality of particles, each of which is coated with a capture agent having an affinity for the virus, is combined with the sample to form a plurality of analyte-particle complexes. The system also includes a transport arrangement for transporting the sample to the sensor surface, and optionally a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of analyte-particle complexes that are bound to the sensor surface.
Abstract:
Methods for detecting estradiol and metabolites thereof in a sample are provided. A plurality of particles, each of which is coated with a capture agent having an affinity for estradiol, is combined with the sample to form a plurality of estradiol-particle complexes. The system also includes a transport arrangement for transporting the sample and/or particles to the sensor surface, and optionally a magnetic field inducing structure constructed and arranged to establish a magnetic field at and adjacent to the sensor surface. The resonant sensor produces a signal corresponding to an amount of estradiol-particle complexes that are bound to the sensor surface.