Abstract:
A method of fabricating a microchannel plate includes defining a plurality of pores extending from a top surface of a substrate to a bottom surface of the substrate where the plurality of pores has a resistive material on an outer surface that forms a first emissive layer. A second emissive layer is formed over the first emissive layer. The second emissive layer is chosen to achieve at least one of an increase in secondary electron emission efficiency and a decrease in gain degradation as a function of time. A top electrode is formed on the top surface of the substrate and a bottom electrode is formed on the bottom surface of the substrate.
Abstract:
A sensing system for a target includes a member with an embedded charge, at least one input electrode, at least one output electrode, at least one common electrode, one or more probes, an input system, and an output monitoring system. The input and output electrodes are spaced from and on substantially opposing sides of the member from the common electrode. At least one of the member and the input and output electrodes is movable with respect to the other. The probes which engage with the target hazardous substance are connected to the at least one of the member and the input and output electrodes which is movable with respect to the other. The input system is coupled between the at least one input electrode and the at least one output electrode and provides an input signal. The output monitoring system is coupled between the at least one output electrode and the at least one common electrode and detects a change in an output signal when the target engages with the movable member or electrode.
Abstract:
An electrostatic interaction system includes a first structure having a first fixed electrostatic charge and a second structure having a second fixed electrostatic charge. The polarity of the first and second fixed electrostatic charges determines a positional relationship of the first structure to the second structure.
Abstract:
A filter system with a housing defining a passage between an inlet and an outlet and one or more structures located in the passage in the housing. Each of the structures comprises two or more layers of insulating materials with an imbedded fixed charge located at at least one of the interfaces between the two or more layers. At least one of the structures has an imbedded fixed charge at a charge level of at least 1×1012 charges per cm2.
Abstract:
A resonator includes a member with an embedded charge, at least one input electrode, at least one output electrode, and at least one common electrode. The input and output electrodes are spaced from and on substantially opposing sides of the member from the common electrode. At least one of the member and the input and output electrodes is movable with respect to the other.
Abstract:
A phosphor comprises, in atomic percentages, 90% to 100% of a mixed metal oxide MxTyOz, wherein M is a metal selected from Zn, Sn, In, Cu, and combinations thereof, T is a refractory metal selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and combinations thereof, and O is Oxygen, x, y, and z being chosen such that z is at most stoichiometric for MxTyOz; and 0% to 10% of a dopant comprising a substance selected from a rare earth element of the lanthanide series, Mn, Cr, and combinations thereof, or stoichiometrically excess zinc, copper, tin, or indium. Cathodoluminescent phosphor compositions stimulable by electrons of very low energy are prepared from metal oxides treated with refractory metals in various processes disclosed. Metal oxides or mixed-metal oxides of zinc, copper, tin, or indium are heated in the presence of a refractory metal such as titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, or combinations or alloys thereof to make phosphors of various chromaticities. In a simple embodiment, a quantity of Ta2O5 is added to a quantity of ZnO and heated at an effective temperature and time to form Ta2Zn3O8, which is useful in various forms as a blue-light-emitting phosphor. In preferred embodiments, the phosphors are prepared in situ in an electrically-conductive thin-film or surface-layer form during fabrication of displays.
Abstract translation:磷光体以原子百分比包含90%至100%的混合金属氧化物M x T y O z,其中M是选自Zn,Sn,In,Cu及其组合的金属,T是选自Ti,Zr, Hf,V,Nb,Ta,Cr,Mo,W及其组合,O是氧,x,y和z,使得z对于M x T y O z为至多化学计量; 以及含有选自镧系元素稀土元素,Mn,Cr及其组合的化合物或化学计量过量的锌,铜,锡或铟的物质的0〜10%的掺杂剂。 由非常低能量的电子刺激的阴极发光荧光体组合物由公开的各种方法由用难熔金属处理的金属氧化物制备。 锌,铜,锡或铟的金属氧化物或混合金属氧化物在钛,锆,铪,钒,铌,钽,铬,钼,钨等难熔金属的存在下被加热,或其组合或合金 以制造各种色度的荧光体。 在一个简单的实施例中,将一定数量的Ta 2 O 5添加到一定量的ZnO中并在有效温度和时间加热以形成Ta 2 Zn 3 O 8,其可以以各种形式用作蓝色发光磷光体。 在优选的实施方案中,在制造显示器期间,以导电薄膜或表面层形式原位制备荧光体。
Abstract:
A self-gettering electron field emitter has a first portion formed of a low-work-function material for emitting electrons, and it has an integral second portion that acts both as a low-resistance electrical conductor and as a gettering surface. The self-gettering emitter is formed by disposing a thin film of the low-work-function material parallel to a substrate and by disposing a thin film of the low-resistance gettering material parallel to the substrate and in contact with the thin film of the low-work-function material. The self-gettering emitter is particularly suitable for use in lateral field emission devices. The preferred emitter structure has a tapered edge, with a salient portion of the low-work-function material extending a small distance beyond an edge of the gettering and low resistance material. A fabrication process specially adapted for in situ formation of the self-gettering electron field emitters while fabricating microelectronic field emission devices is also disclosed.
Abstract:
A microelectronic light-emitting device (10) is made with dual lateral thin-film emitters (35 and 40) substantially parallel to a substrate (20). Emitter electrodes (35 and 40) have a thickness of not more than several hundred angstroms. Each emitter has an emitting blade edge (110 or 115) having a small radius of curvature. Thus, opposed emitters for two opposite-sign carriers are provided, shaped to provide very high electric field intensity at their emitting tips. A region containing phosphor (50) extends between the two emitters and contacts them. When a suitable bias voltage is applied, electrons are injected into the phosphor from the blade edge of one emitter and holes are injected from the other emitter. The sum of diffusion lengths of the carriers (including secondary carriers) is equal to or greater than the shortest distance between the emitters. DC, AC, pulsed, or other voltage waveforms can be applied. Light emission is excited from the phosphor by carrier recombination. Devices may be combined in a matrix display array, and/or combined to form a super-pixel, and/or combined to form segments of a character display.
Abstract:
A field emission device (10) is made with a lateral emitter (100) substantially parallel to a substrate (20) and with a simplified anode stucture (70). The lateral-emitter field-emission device has a thin-film emitter cathode (100) which has a thickness not exceeding several hundred angstroms and has an emitting blade edge or tip (110) having a small radius of curvature. The anode's top surface is precisely spaced apart from and below the plane of the lateral emitter and receives electrons emitted by field emission from the blade edge or tip of the lateral-emitter cathode, when a suitable bias voltage is applied. A fabrication process is disclosed using process steps (S1-S18) similar to those of semiconductor integrated circuit fabrication to produce the novel devices and their arrays. Various embodiments of the fabrication process allow the use of conductive or insulating substrates (20) and allow fabrication of devices having various functions and complexity. The anode (70) is simply fabricated, without the use of prior-art processes which formed a spacer made by a conformal coating. In a preferred fabrication process for the simplified anode device, the following steps are performed: an anode film (70) is deposited; an insulator film (90) is deposited over the anode film; an ultra-thin conductive emitter film (100) is deposited over the insulator and patterned; a trench opening (160) is etched through the emitter and insulator, stopping at the anode film, thus forming and automatically aligning an emitting edge of the emitter; and means are provided for applying an electrical bias to the emitter and anode, sufficient to cause field emission of electrons from the emitting edge of the emitter to the anode. The anode film may comprise a phosphor (75) for a device specially adapted for use in a field emission display. The fabrication process may also include steps to deposit additional insulator films (130) and to deposit additional conductive films for control electrodes (140), which are automatically aligned with the emitter blade edge or tip (110).
Abstract:
A lateral field emission device and method of fabricating the device which maximizes gate control of the cathode emitter electric field strength is disclosed. Gate control increases when the position of the gate edge is optimized with respect to the position of the emitter tip. Maximum control is achieved if the gate extends a distance beyond the emitter in the direction of the anode. Preferably, the displacement of the gate edge from the emitter tip is one half the cathode tip-anode distance for optimum control. The high gain device of the present invention provides improved transconductance.