Abstract:
In a diesel engine, an inside of a cylinder is divided into intra-cavity and extra-cavity regions. Ideal heat release rate waveform models, each formed of an isosceles triangle in which each oblique line gradient is a reaction rate, an area is a reaction amount and a base length is a reaction period with a reaction start temperature as a base point, are generated respectively for a vaporization reaction, low-temperature oxidation reaction, thermal decomposition reaction and high-temperature oxidation reaction of injected fuel for each region. An ideal heat release rate waveform of the reaction modes is generated by smoothing the ideal heat release rate waveform models through filtering and combining the ideal heat release rate waveforms, and is compared with an actual heat release rate waveform obtained from a detected in-cylinder pressure. A reaction mode having a deviation larger than or equal to a predetermined amount is diagnosed as being abnormal.
Abstract:
A series of combustion forms including initial low-temperature combustion, premixed combustion, and diffusive combustion are performed when an engine operates under a low load and a medium load. The initial low-temperature combustion is carried out by performing a small-amount injection while performing an operation for lowering the encounter rate between oxygen and a fuel spray in a cylinder, and thereby the heat generation rate is kept low and the amount of NOx generated is suppressed. The premixed combustion is carried out as fuel receives heat in the initial low-temperature combustion, and the amount of smoke generated is suppressed. The diffusive combustion is accomplished as fuel travels through the combustion field of the premixed combustion, and by controlling the fuel injection timing thereof, it is possible to suitably control the timing at which the heat generation rate reaches its maximum in the aforementioned series of combustion. Thereby, it is possible to concurrently suppress the amount of NOx generated, suppress the amount of smoke generated, and secure the required torque.
Abstract:
A series of combustion forms including initial low-temperature combustion, premixed combustion, and diffusive combustion are performed when an engine operates under a low load and a medium load. The initial low-temperature combustion is carried out by performing a small-amount injection while performing an operation for lowering the encounter rate between oxygen and a fuel spray in a cylinder, and thereby the heat generation rate is kept low and the amount of NOx generated is suppressed. The premixed combustion is carried out as fuel receives heat in the initial low-temperature combustion, and the amount of smoke generated is suppressed. The diffusive combustion is accomplished as fuel travels through the combustion field of the premixed combustion, and by controlling the fuel injection timing thereof, it is possible to suitably control the timing at which the heat generation rate reaches its maximum in the aforementioned series of combustion. Thereby, it is possible to concurrently suppress the amount of NOx generated, suppress the amount of smoke generated, and secure the required torque.
Abstract:
One of the two accelerator sensors 165a and 165b is detected faulty by analyzing variation patterns outputted by the two sensors even when the outputs of two sensors remain within their respective normal output ranges. An accelerator control input is determined using the output of the fault-free sensor if a faulty sensor is detected. The fault detector detects the faulty sensor by analyzing variation patterns of outputs of the first and second accelerator sensors when the outputs of the first and second accelerator sensors remain within respective normal output ranges thereof.
Abstract:
In one embodiment, a total pilot injection amount is calculated from the difference between a compressed gas temperature in a cylinder and a fuel self-ignition temperature. As pilot injection, a plurality of instances of divided pilot injection are performed, and by setting the injection amount per one instance of divided pilot injection to an injector minimum limit injection amount, each divided pilot injection amount is suppressed, and the penetration of fuel is suppressed to a low level so that attachment of fuel to a wall face is avoided, and also, fuel is caused to accumulate in the center portion of the cylinder.
Abstract:
A hybrid vehicle of the invention has an engine, a planetary gear unit including a carrier linked with rankshaft of the engine and a ring gear linked with a drive shaft, a motor MG1 inputting and outputting power to and from a sun gear of the planetary gear unit, and a motor MG2 inputting and outputting power to and from the drive shaft. During a drive of the hybrid vehicle in a light load state and under a drive restriction of the motor MG2, the hybrid vehicle corrects a target revolution speed Ne* of the engine to make a calculated average charge-discharge electric power Wbave of a battery equal to a charge-discharge electric power demand Wb*, while keeping a torque of the engine unchanged (steps S300 to S330), and controls actuation of the engine and the motors MG1 and MG2.
Abstract:
An output restriction device for restricting engine output when a drive power output system for an internal combustion engine has an abnormality is provided. The output restriction device includes an abnormality detection unit, and initial restriction unit, and a secondary restriction unit. The abnormality restriction unit detects an abnormality in the drive power output system. The initial restriction unit restricts a tolerable range of the engine output to a first restriction region when the abnormality detection unit detects an abnormality in the drive power output system. A secondary restriction unit shifts the tolerable range of the engine output to a second restriction region, which has an upper limit lower than that of the first restriction region, in accordance with an operation history of the engine after the initial restriction unit restricts the tolerable range of the engine output to the first restriction region.
Abstract:
Under the condition of a large variation Tm in motor torque demand Tm*, the significant torque change may lead to some vibration of a vehicle to temporarily heighten an angular acceleration. The temporary rise of the angular acceleration may cause the angular acceleration to exceed a preset threshold value slip and result in misdetection of the occurrence of a ‘phantom’ skid in an angular acceleration—based skid state determination (step S112). The drive control of the invention accordingly specifies a potential for misdetection of the occurrence of a ‘phantom’ skid when the variation Tm in motor torque demand Tm* exceeds a preset threshold value Tthr at step S108. The drive control thereby does not execute skid occurring state control (step S120) with torque restriction but performs grip state control at step S116.
Abstract:
Under the condition of a large variation ΔTm in motor torque demand Tm*, the significant torque change may lead to some vibration of a vehicle to temporarily heighten an angular acceleration α. The temporary rise of the angular acceleration α may cause the angular acceleration α to exceed a preset threshold value αslip and result in misdetection of the occurrence of a ‘phantom’ skid in an angular acceleration α-based skid state determination (step S112). The drive control of the invention accordingly specifies a potential for misdetection of the occurrence of a ‘phantom’ skid when the variation ΔTm in motor torque demand Tm* exceeds a preset threshold value Tthr at step S108. The drive control thereby does not execute skid occurring state control (step S120) with torque restriction but performs grip state control at step S116.
Abstract:
An increase in angular acceleration α of a rotating shaft of a motor, which outputs a torque to a drive shaft linked to drive wheels, may cause a skid on the drive wheels. In response to detection of a skid, the control procedure of the invention sets a maximum torque Tmax according to a preset map representing a relation between the angular acceleration α and the maximum torque Tmax, and restricts an output torque level to the drive shaft. The map is set to decrease the maximum torque Tmax with an in crease in angular acceleration α. The restricted output torque level is restored at a zero cross timing of the angular acceleration α after a negative peak in the course of convergence of the skid. This arrangement makes the direction of the torque restored from the torque restriction identical with the direction of the angular acceleration, thus effectively reducing torsions of the drive shaft and thereby preventing potential torsional vibrations of the drive shaft.