Abstract:
A bumper molding is fabricated by disposing segmented anodes 31 and 32 on surfaces 22 and 24 of a base material 20, which are to be plated, and performing electroplating so as to form metal films on the surfaces 22 and 24, respectively. The curvature of a surface of a concave portion, which is formed in each part of the surfaces 22 and 24 so that the surface of the concave portion is away from the segmented anodes 31 and 32, respectively, is larger than those of other portions at a part serving as a border between the second plated surface 22 and the fourth plated surface 24. Accordingly, the distance from the part serving as the border between the second plated surface 22 and the fourth plated surface 24 to a metal case 50a corresponding to this part is set so as to be shorter than those from each of the other parts to the metal cases 50a and 50b respectively corresponding to the segmented anodes 31 and 32.
Abstract:
While comprising filled minor compartments being filled with an inclusion in which a liquid makes the major component, and vacant minor compartments being filled with the air, at least one of the vacant minor compartments adjoins the filled minor compartments, and a fragile section is formed in at least one of ribs that demarcate the filled minor compartments and the adjoining vacant minor compartments. After the fragile section has fractured, shock energy can be absorbed furthermore by means of circulation resistance to the inclusion that flows from the filled minor compartments to the vacant minor compartments.
Abstract:
A second metal mold 15 has a through hole 31 that extends in the movement direction of the second metal mold 15. A first metal mold 14 has an internal threaded portion 34 that extends on a common line with the through hole 31 and has an opening at the surface of the first metal mold 14 facing the second metal mold 15. A bolt 39 formed by a shaft 37 and a head 38 is employed. The shaft 37 is passed through the through hole 31 in such a manner that the head 38 is arranged at the opposite side to the first metal mold 14 with respect to the second metal mold 15, and the distal end of the shaft 37 is located at the same side as the first metal mold 14 with respect to the second metal mold 15. When the second metal mold 15 is held in contact with the first metal mold 14, the bolt 39 is rotated by an electric motor 45 through the head 38. In this manner, an external thread 41, which is formed at the distal end of the shaft 37, is threaded to the internal threads 36 of the internal threaded portion 34. This presses the second metal mold 15 against the first metal mold 14.
Abstract:
A second metal mold 15 has a through hole 31 that extends in the movement direction of the second metal mold 15. A first metal mold 14 has an internal threaded portion 34 that extends on a common line with the through hole 31 and has an opening at the surface of the first metal mold 14 facing the second metal mold 15. A bolt 39 formed by a shaft 37 and a head 38 is employed. The shaft 37 is passed through the through hole 31 in such a manner that the head 38 is arranged at the opposite side to the first metal mold 14 with respect to the second metal mold 15, and the distal end of the shaft 37 is located at the same side as the first metal mold 14 with respect to the second metal mold 15. When the second metal mold 15 is held in contact with the first metal mold 14, the bolt 39 is rotated by an electric motor 45 through the head 38. In this manner, an external thread 41, which is formed at the distal end of the shaft 37, is threaded to the internal threads 36 of the internal threaded portion 34. This presses the second metal mold 15 against the first metal mold 14.
Abstract:
While comprising filled minor compartments being filled with an inclusion in which a liquid makes the major component, and vacant minor compartments being filled with the air, at least one of the vacant minor compartments adjoins the filled minor compartments, and a fragile section is formed in at least one of ribs that demarcate the filled minor compartments and the adjoining vacant minor compartments. After the fragile section has fractured, shock energy can be absorbed furthermore by means of circulation resistance to the inclusion that flows from the filled minor compartments to the vacant minor compartments.
Abstract:
It includes an electroformed shell 6, which has a molding surface 60 and is formed by electroforming processing, a media flow path 2 for circulating a heat medium so as to perform temperature adjustment on the molding surface 60 formed in the electroformed shell 6, a backing member 71 with which the electroformed shell 6 is backed, and media conveying paths 74, respectively provided in an upstream-side end portion 21 and a downstream-side end portion 21, for flowing a heat medium into or out of the media flow path 2. A connecting jig 1 for connecting the media flow path 2 and the media conveying paths 74 is embedded in the electroformed shell 6. The connecting jig 1 includes a cavity portion formed therein, an opening hole having a cross-sectional shape which is substantially the same as the shape of a radially cross-section of the media flow path 2, and a connecting hole having a cross-sectional shape which is substantially the same as the shape of an outside diametrical cross-section of a pipe member 741 constituting each of the media conveying paths 74. The opening hole and the connecting hole are communicated with each other through the cavity portion.
Abstract:
A bumper molding is fabricated by disposing segmented anodes 31 and 32 on surfaces 22 and 24 of a base material 20, which are to be plated, and performing electroplating so as to form metal films on the surfaces 22 and 24, respectively. The curvature of a surface of a concave portion, which is formed in each part of the surfaces 22 and 24 so that the surface of the concave portion is away from the segmented anodes 31 and 32, respectively, is larger than those of other portions at a part serving as a border between the second plated surface 22 and the fourth plated surface 24. Accordingly, the distance from the part serving as the border between the second plated surface 22 and the fourth plated surface 24 to a metal case 50a corresponding to this part is set so as to be shorter than those from each of the other parts to the metal cases 50a and 50b respectively corresponding to the segmented anodes 31 and 32.
Abstract:
The present invention provides a radio wave transmission cover, which is provided in front of a radar device for vehicles, and a method of manufacturing the radio wave transmission cover. In the radio wave transmission cover, cover-side wall surfaces (50) are formed in a second cover layer (35) at positions adjacent to each other. Furthermore, substrate-side wall surfaces (60), which have shapes complementary to the cover-side wall surfaces (50), are formed in a substrate layer (4), which is provided on the rear surface of the second cover layer (35). The cover-side wall surfaces (50) and the corresponding substrate-side wall surfaces (60) are engaged to each other.
Abstract:
The present invention provides a radio wave transmission cover, which is provided in front of a radar device for vehicles, and a method of manufacturing the radio wave transmission cover. In the radio wave transmission cover, cover-side wall surfaces (50) are formed in a second cover layer (35) at positions adjacent to each other. Furthermore, substrate-side wall surfaces (60), which have shapes complementary to the cover-side wall surfaces (50), are formed in a substrate layer (4), which is provided on the rear surface of the second cover layer (35). The cover-side wall surfaces (50) and the corresponding substrate-side wall surfaces (60) are engaged to each other.