摘要:
An integrated circuit may include path delay calibration circuitry. The calibration circuitry may be configured to calibrate respective delay paths so that data and control signals travelling through the respective delay paths experience proper propagation delays during normal user operation. The calibration circuitry may include a high frequency error calibration circuit, a monitoring circuit, and a calibration processing circuit. The high frequency error calibration circuit may be used to compute first calibration settings that take into account jitter and process variations. The monitoring circuit may be used to measure a proxy parameter of interest. The processing circuit may be used to compute an offset based at least partly on the measured value of the proxy parameter. The offset may be applied to the first calibration settings to obtain second calibration settings, which can be used to configure the respective delay paths.
摘要:
A method for performing timing analysis on calibrated paths includes performing static timing analysis on the calibrated paths to obtain delay and margin information. The delay and margin information are utilized to emulate operations performed during calibration.
摘要:
A method for providing transistor threshold voltage compensation in an FPGA integrated circuit with a plurality of programmable circuit blocks includes measuring the effective transistor threshold voltage values of each programmable circuit block and adjusting the effective transistor threshold voltage values of each programmable circuit block to compensate for the difference between the measured effective transistor threshold voltage value and the target effective transistor threshold voltage value.
摘要:
Asymmetric SRAM cell designs exploiting data storage patterns found in ordinary software programs wherein most of the bits stored are zeroes for data and instruction streams. The asymmetric SRAM cell designs offer lower leakage power with little impact on latency. In asymmetric SRAM cells, selected transistors are “weakened” to reduce leakage current when the cell is storing a zero. Transistor weakening may be achieved by using higher voltage threshold transistors, by varying transistor geometries, or other means. In addition, a novel sense amplifier design is provided that leverages the asymmetric nature of the asymmetric SRAM cells to offer cell read times that are comparable with conventional symmetric SRAM cells. Lastly, cache memory designs are provided that are based on asymmetric SRAM cells offering leakage power reduction while maintaining high performance, comparable noise margins, and stability with respect to conventional cache memories.
摘要:
Systems or methods of the present disclosure may provide a programmable logic device including a network-on-chip (NoC) to facilitate data transfer between one or more main intellectual property components (main IP) and one or more secondary intellectual property components (secondary IP). To reduce or prevent excessive congestion on the NoC, the NoC may include one or more traffic throttlers that may receive feedback from a data buffer, a main bridge, or both and adjust data injection rate based on the feedback. Additionally, the NoC may include a data mapper to enable data transfer to be remapped from a first destination to a second destination if congestion is detected at the first destination.
摘要:
This invention provides methods, computer program products, and systems to guide a user in optimizing the Simultaneous Switching Noise (SSN) of an electronic device by using visual approaches on a graphical user interface (GUI). Also provided is an interactive feedback mechanism that enables the user to evaluate the effectiveness of an optimization method. A matrix representation of the different I/O pins on the device shows the level of SSN at different victim pins caused by switching aggressor pins. The SSN is depicted using different graphical representations. Associated with the SSN of each victim pin is the graphical representation of its accuracy. The accuracy rating denotes the reliability of the SSN and is an indication of how sensitive a victim pin is to errors. In the interactive feedback mechanism, user input on SSN optimization is received and used to calculate the new SSN and accuracy rating of different victim pins on the device. The new data is then updated in a timely manner on the GUI.
摘要:
Integrated circuits may communicate with off-chip memory. Such types of integrated circuits may include memory interface circuitry that is used to interface with the off-chip memory. The memory interface circuitry may be calibrated using a procedure that includes read calibration, write leveling, read latency tuning, and write calibration. Read calibration may serve to ensure proper gating of data strobe signals and to center the data strobe signals with respect to read data signals. Write leveling ensures that the data strobe signals are aligned to system clock signals. Read latency tuning serves to adjust read latency to ensure optimum read performance. Write calibration may serve to center the data strobe signals with respect to write data signals. These calibration operations may be used to calibrate memory systems supporting a variety of memory communications protocols.
摘要:
Methods for determining induced noise on a given victim by a set of aggressor signals are presented, and for identifying the worst case aggressor switching time alignment that causes the worst case victim noise. The method removes circuit analysis pessimism related to simultaneous switching noise (SSN) in a circuit design tool by determining physically impossible combinations of victim-aggressor input/output (I/O) pins in a circuit design and culling out the impossible combinations from the list of possible victim-aggressor combinations. The method further performs a switching window SSN analysis of the circuit design with a common uncertainty removal algorithm taking into consideration the list of possible victim-aggressor combinations, and determines the maximum voltage noise induced on I/O pins of the circuit design. The results of the noise analysis are displayed to the user.
摘要:
Methods and apparatus for reducing simultaneous switching noise (SSN) in an integrated circuit (IC) designed with a computer aided design (CAD) tool are presented. In one method, value assignments for parameters of the IC are received by the CAD tool. The value assignments are entered as a range of value assignments or as a list of possible value assignments. Further, the method includes an operation for determining the minimum and the maximum path delays for each Input/Output (I/O) pin in an I/O block such that the received value assignments are satisfied. The actual switching times of the I/O pins are spread out in time to decrease SSN in the I/O pins. The switching times are spread out so that the switching times fall between the minimum and the maximum path delay for the corresponding I/O pin. Additionally, other method operations are included for routing paths to the I/O pins to meet the actual switching times and for creating a design for the IC that meets the actual switching times.
摘要:
Asymmetric SRAM cell designs exploiting data storage patterns found in ordinary software programs wherein most of the bits stored are zeroes for data and instruction streams. The asymmetric SRAM cell designs offer lower leakage power with little impact on latency. In asymmetric SRAM cells, selected transistors are “weakened” to reduce leakage current when the cell is storing a zero. Transistor weakening may be achieved by using higher voltage threshold transistors, by varying transistor geometries, or other means. In addition, a novel sense amplifier design is provided that leverages the asymmetric nature of the asymmetric SRAM cells to offer cell read times that are comparable with conventional symmetric SRAM cells. Lastly, cache memory designs are provided that are based on asymmetric SRAM cells offering leakage power reduction while maintaining high performance, comparable noise margins, and stability with respect to conventional cache memories.