Abstract:
An apparatus and method for delivering repetitive, precision, low volume liquid dispensing from a dispensing orifice of a non-contact liquid dispensing apparatus. An elongated communication passageway of the dispensing apparatus is defined by interior walls having one end in fluid communication with a system fluid reservoir and an opposite end terminating at the dispensing orifice. A system fluid is placed in the communication passageway extending substantially continuously from the system fluid reservoir to the dispensing orifice. A relatively small volume of gaseous fluid is aspirated through the dispensing orifice, and into the communication passageway in a manner such that the gaseous fluid extends substantially continuously across the transverse cross-sectional dimension of the communication passageway. Subsequently, a dispensing liquid is aspirated through the dispensing orifice and into the communication passageway in a manner such that the relatively small volume of aspirated gaseous fluid forms a minute, unitary air gap fully enclosed between the interior walls of the communication passageway and a liquid interface between the system fluid and the dispensing liquid contained in the communication passageway. This minute air gap substantially prevents dispersion and dilution therebetween at the liquid interface. To effect dispensing, a rapid pressure pulse with a predetermined pulse width is applied to the system fluid upstream from the minute air gap, causing the pressure pulse to traverse the minute air gap to the dispensing liquid without substantial fluid compression of the minute air gap. This enables substantially accurate, relatively small volume, non-contact liquid dispensing of the dispensing liquid from the dispensing orifice.
Abstract:
A hybrid valve apparatus for use with an aspiration actuator and a dispensing actuator to transfer fluid from a reservoir to a test site on a substrate surface. The hybrid valve includes a valve assembly movable between an aspiration condition and a dispensing condition, and a manifold device coupled to the valve assembly. The manifold device includes a fluid aspiration conduit having a first aspiration port in fluid communication with the aspiration actuator. On an opposite end of the aspiration conduit is a second aspiration port in selective fluid communication with the valve assembly to selectively aspirate a liquid sample slug from the reservoir into a discrete sample path when the valve assembly is in the aspiration condition. The manifold device further includes a fluid dispensing conduit having a first dispensing port in fluid communication with the dispensing actuator, and a second dispensing port in selective fluid communication with the valve assembly. When the valve assembly is in the dispensing condition, the sample path is fluidly coupled to the dispensing actuator to selectively dispense at least one droplet of the liquid sample slug therefrom, while simultaneously being out of fluid communication with the aspiration actuator. In contrast, in the aspiration condition, the sample path is in fluid communication with the aspiration actuator, while being out of fluid communication with the dispensing actuator.
Abstract:
A capillary column connector assembly includes a pair of body members fabricated from a resilient, inert ceramic having high compressive strength. Each body member has an inwardly tapering longitudinal throughbore within which the end of a capillary column can be inserted by press-fitting. A split sleeve holds the two body members in mutually facing alignment with inner end surfaces in compressed mutual contact. The inner end surfaces are slightly radiussed in order to deform upon compression and provide a fluid-tight seal surrounding the junction between the inner ends of the longitudinal bores, thereby eliminating the need for any separate sealing gasket.A mechanical assembly comprising an inner spool, an outer housing, a spring, and a bearing-mounted support provide axial compression forces tending to urge the ceramic body members into mutual facing contact with the radiussed surfaces deformed.
Abstract:
A fluidic processor includes a first sealing member having a first sealing face, a first compressive face and at least one first sealing member fluid conduit; a second sealing member having a second sealing face, a second compressive face and at least one second sealing member fluid conduit; the second sealing face of the second sealing member being sealingly and slidingly engaged in a substantially fluid tight manner with the first sealing face of the first sealing member; and at least one actuator mechanically engaging at least one of the first sealing member and the second sealing member, or an XY stage, or mechanism that provides motion in two axes on one sealing member only.
Abstract:
A manifold device is provided for use with a valve assembly, an aspiration source and a dispensing source to transfer fluid from at least one of a plurality of fluid reservoirs to at least one test site on a substrate surface. The manifold device includes a manifold body that defines a plurality of fluid aspiration conduits, for fluid aspiration in an aspiration position, and a plurality of fluid dispensing conduits to selectively dispense at least one droplet of the corresponding liquid sample slug, in a dispensing position. In the aspiration position, the respective sample paths are out of fluid communication with the dispensing source and, in the dispensing position, the respective sample paths are out of fluid communication with the aspiration source.
Abstract:
A universal calibration apparatus and method to estimate the dispense output from a low volume, non-contact, liquid dispensing systems that may be applied for every hardware configuration (e.g., tube length, orifice diameter, tip design, etc), reagent solution property and environmental condition. This same calibration technique is applied to calibrate or tune these non-contact liquid dispensing systems to dispense desired volumes (in the range of about 0.050 μL to 50 μL), irrespective of the hardware configuration or the solution properties. That is, the calibration technique is not dependent on any variables, but the result (the actual dispense volume) is dependant on the variable mentioned. By actuating selected pulse widths, and measuring the resulting volume, a Calibration Profile can be generated correlating the liquid volume dispensed from the orifice to the respective pulse width of the dispensing valve thereof through calibration points. In particular, one is selected to deliver a first volume of liquid that is less than a lower base pulse width correlating to the lowest volume of the selected range of volumes of liquid, while a second pulse width is selected to deliver a second volume of liquid dispensed that is greater than an upper ceiling pulse width correlating to the highest volume of the selected range of volumes of liquid. Intermediary pulse widths are also applied, each selected to deliver a different, spaced-apart, respective intermediary low volumes of liquid dispensed from the dispensing orifice between the first volume and the second volume. Thus, applying the Calibration Profile, the pulse widths correlating to the one or more targeted discrete volumes for liquid dispensing can be extrapolated.
Abstract:
An injection valve assembly with looping internal sample loop works to inject discrete fluid samples into analytical instrumentation. The assembly provides an internal sample loop that carries the fluid sample follows an outwardly looping path. This looping deposition enables internal sample loop to have a uniform cross section and a larger sample volume of fluid; thereby creating enhanced peak shape in chromatography readings. The assembly provides a stator defined by stator openings, and a rotor defined by rotor grooves. The rotor grooves are arranged to form a rotor circumference. A stator face engages the stator to maintain operational engagement between the stator and the rotor. Internal sample loop is defined by a generally looped shape and an inner tube diameter. Internal sample loop follows a path at least partially outside the rotor circumference; whereby more than half of the length of internal sample loop is outside the rotor circumference.
Abstract:
A hybrid valve apparatus for use with an aspiration actuator and a dispensing actuator to transfer fluid from a reservoir to a test site on a substrate surface. The hybrid valve includes a valve assembly movable between an aspiration condition and a dispensing condition, and a manifold device coupled to the valve assembly. The manifold device includes a fluid aspiration conduit having a first aspiration port in fluid communication with the aspiration actuator. On an opposite end of the aspiration conduit is a second aspiration port in selective fluid communication with the valve assembly to selectively aspirate a liquid sample slug from the reservoir into a discrete sample path when the valve assembly is in the aspiration condition. The manifold device further includes a fluid dispensing conduit having a first dispensing port in fluid communication with the dispensing actuator, and a second dispensing port in selective fluid communication with the valve assembly. When the valve assembly is in the dispensing condition, the sample path is fluidly coupled to the dispensing actuator to selectively dispense at least one droplet of the liquid sample slug therefrom, while simultaneously being out of fluid communication with the aspiration actuator. In contrast, in the aspiration condition, the sample path is in fluid communication with the aspiration actuator, while being out of fluid communication with the dispensing actuator.
Abstract:
A high pressure be seating assembly adapted for liquid sealing against a rigid surface having a connecting conduit. The tube sealing assembly includes a rigid, elongated, tube member having a spherical sector-shaped distal end portion with a radius substantially larger than the radius of the tube member. The tube member further includes a central conduit terminating at an apex of the spherical sector-shaped distal end portion to define an annular rim portion such that a fluid-tight seal can be formed between the central conduit of the tube member and the connecting conduit of the surface. This seal is formed at a contact interface between the rim portion and the surface when a relative axial force is applied therebetween.