Abstract:
Embodiments of the present disclosure describe background reordering techniques and configurations to prevent wear-out of an integrated circuit device such as a memory device. In one embodiment, a method includes receiving information about one or more incoming access transactions to a memory device from a processor, determining that a wear-leveling operation is to be performed based on a cumulative number of access transactions to the memory device, the cumulative number of access transactions including the one or more incoming access transactions, and performing the wear-leveling operation by mapping a first physical address of the memory device to a second physical address of the memory device based on a pseudo-random mapping function, and copying information from the first physical address to the second physical address. Other embodiments may be described and/or claimed.
Abstract:
Briefly, a system that maps SONET/SDH data to an OTN frame using justification commands. Briefly, a system that de-maps an OTN frame into SONET/SDH data using justification commands.
Abstract:
A method is disclosed of aligning a frame in a digital communication system. The method includes comparing a portion of a received data sequence to a portion of a predetermined sequence. If the total number of comparison errors does not exceed a tolerance threshold that is greater than zero then the frame is aligned.
Abstract:
A wireless device with a multi-radio platform includes a scheduling coordinator connected by a control bus to enable the radios to share frequency spectrum by operating during time slots requested by the radios, avoid collisions, mitigate interference and control shared hardware components.
Abstract:
In accordance with the present description, cache operations for a memory-sided cache in front of a backing memory such as a byte-addressable non-volatile memory, include combining at least two of a first operation, a second operation and a third operation, wherein the first operation includes evicting victim cache entries from the cache memory in accordance with a replacement policy which is biased to evict cache entries having clean cache lines over evicting cache entries having dirty cache lines. The second operation includes evicting victim cache entries from the primary cache memory to a victim cache memory of the cache memory, and the third operation includes translating memory location addresses to shuffle and spread the memory location addresses within an address range of the backing memory. It is believed that various combinations of these operations may provide improved operation of a memory. Other aspects are described herein.
Abstract:
Embodiments of the present disclosure describe background reordering techniques and configurations to prevent wear-out of an integrated circuit device such as a memory device. In one embodiment, a method includes receiving information about one or more incoming access transactions to a memory device from a processor, determining that a wear-leveling operation is to be performed based on a cumulative number of access transactions to the memory device, the cumulative number of access transactions including the one or more incoming access transactions, and performing the wear-leveling operation by mapping a first physical address of the memory device to a second physical address of the memory device based on a pseudo-random mapping function, and copying information from the first physical address to the second physical address. Other embodiments may be described and/or claimed.