Abstract:
A communication device includes a storage unit that stores a predetermined eye mask pattern indicating a receivable range, a receiving unit that receives data from the other communication device, a waveform comparing unit for comparing a waveform of the received data with the eye mask pattern to generate comparison result data and a transmission unit for transmitting the comparison result data to the other communication device.
Abstract:
An object of the present invention is to provide a semiconductor device which comprises a barrier film having a high etching selection ratio of the interlayer insulating film thereto, a good preventive function against the Cu diffusion, a low dielectric constant and excellent adhesiveness to the Cu interconnection and a manufacturing method thereof.The barrier film (for instance, a second barrier film 6) disposed between the interconnection or the via plug and its overlying interlayer insulating film is made to have a layered structure made of a plurality of films containing silicon and carbon (preferably, silicon, carbon and nitrogen), with different carbon contents, and, in particular, a low-carbon-concentration film 6a with a small carbon content is set to be a lower layer therein and a high-carbon-concentration film 6b with a large carbon content is set to be an upper layer therein, whereby the effectual prevention against the Cu diffusion, a high etching selection ratio and good adhesiveness to the Cu interconnection can be certainly provided by the presence of the low-carbon-concentration film 6a, while the overall dielectric constant can be well reduced by the presence of the high-carbon-concentration film 6b.
Abstract:
In a method of manufacturing a semiconductor device where at least one insulating layer structure having a metal wiring constitution is formed to thereby construct a multi-layered wiring arrangement, a first SiOCH layer is produced. Then, a surface section of the first SiOCH layer is treated to change the surface section of the first SiOCH layer to a second SiOCH layer which features a carbon (C) density lower than that of the first SiOCH layer, a hydrogen (H) density lower than that of the first SiOCH layer and an oxygen (O) density higher than that of the first SiOCH layer. Finally, a silicon dioxide (SiO2) layer is formed on the second SiOCH layer.
Abstract:
The dielectric constants of SiC and SiCN that are currently the subjects of much investigation are both 4.5 to 5 or so and that of SiOC, 2.8 to 3.0 or so. With further miniaturization of the interconnection size and the spacing of interconnections brought about by the reduction in device size, there have arisen strong demands that dielectric constants should be further reduced.Furthermore, because the etching selection ratio of SiOC to SiCN as well as that of SiOC to SiC are small, if SiCN or SiC is used as the etching stopper film, the surface of the metal interconnection layer may be oxidized at the time of photoresist removal, which gives rise to a problem of high contact resistance.The present invention relates to an organic film made of one of SiOCH, SiCHN and SiCH that is formed using, as a source, a polyorganosilane whose C/Si ratio is at least 5 or greater and molecular weight is 100 or greater, and a semiconductor device wherein such an organic insulating film is used, and more particularly to a semiconductor device having a trench structure.
Abstract:
A cyclic equation setting unit transforms and sets a Taylor series equation for calculating a sine function into a single cyclic equation common to terms of the Taylor series equation, the single cyclic equation having a new known number Q that is defined by multiplying a known number Q and the square of a variable X, shifting the result by a shift number S and then adding a constant K thereto. An adjustment unit adjusts and prepares the shift number S such that within a variation range of the variable X the variable X has a maximum value 1 with the constant K being not greater than 1. A cyclic equation executing unit inputs and converts angle information i to the variable X, and executing the cyclic equation in sequence from higher order term to lower order term for the number of terms of the Taylor series equation to derive a sine function of the angle information i.
Abstract:
A semiconductor device includes an interlayer insulating film formed on or over a semiconductor substrate. An opening is formed in the interlayer insulating film and reaches a lower layer metal wiring conductor. A metal plug is formed by filling the opening with Cu containing metal via a barrier metal. The interlayer insulating film includes the insulating film which includes a carbon containing silicon oxide (SiOCH) film which has Si—CH2 bond in the carbon containing silicon oxide film. The proportion of Si—CH2 bond (1360 cm-1) to Si—CH3 bond (1270 cm-1) in the insulating film is in a range from 0.03 to 0.05 measured as a peak height ratio of FTIR spectrum.
Abstract:
A technology for inhibiting the dielectric breakdown occurred in a semiconductor device is provided. A semiconductor device includes a semiconductor substrate (not shown), an interlayer insulating film 102 formed on the semiconductor substrate and a multiple-layered insulating film 140 provided on the interlayer insulating film 102. The semiconductor device also includes an electric conductor that extends through the multiple-layered insulating film 140 and includes a Cu film 120 and a barrier metal film 118. The barrier metal film 118 is covers side surfaces and a bottom surface of the Cu film 120. An insulating film 116 is disposed between the multiple-layered insulating film 140 and the electric conductor (i.e., Cu film 120 and barrier metal film 118).
Abstract:
An object of the present invention is to provide a semiconductor device which comprises a barrier film having a high etching selection ratio of the interlayer insulating film thereto, a good preventive function against the Cu diffusion, a low dielectric constant and excellent adhesiveness to the Cu interconnection and a manufacturing method thereof.The barrier film (for instance, a second barrier film 6) disposed between the interconnection or the via plug and its overlying interlayer insulating film is made to have a layered structure made of a plurality of films containing silicon and carbon (preferably, silicon, carbon and nitrogen), with different carbon contents, and, in particular, a low-carbon-concentration film 6a with a small carbon content is set to be a lower layer therein and a high-carbon-concentration film 6b with a large carbon content is set to be an upper layer therein, whereby the effectual prevention against the Cu diffusion, a high etching selection ratio and good adhesiveness to the Cu interconnection can be certainly provided by the presence of the low-carbon-concentration film 6a, while the overall dielectric constant can be well reduced by the presence of the high-carbon-concentration film 6b.
Abstract:
An object of the present invention is to provide a semiconductor device which comprises a barrier film having a high etching selection ratio of the interlayer insulating film thereto, a good preventive function against the Cu diffusion, a low dielectric constant and excellent adhesiveness to the Cu interconnection and a manufacturing method thereof.The barrier film (for instance, a second barrier film 6) disposed between the interconnection or the via plug and its overlying interlayer insulating film is made to have a layered structure made of a plurality of films containing silicon and carbon (preferably, silicon, carbon and nitrogen), with different carbon contents, and, in particular, a low-carbon-concentration film 6a with a small carbon content is set to be a lower layer therein and a high-carbon-concentration film 6b with a large carbon content is set to be an upper layer therein, whereby the effectual prevention against the Cu diffusion, a high etching selection ratio and good adhesiveness to the Cu interconnection can be certainly provided by the presence of the low-carbon-concentration film 6a, while the overall dielectric constant can be well reduced by the presence of the high-carbon-concentration film 6b.
Abstract:
A technology for inhibiting the dielectric breakdown occurred in a semiconductor device is provided. A semiconductor device includes a semiconductor substrate (not shown), an interlayer insulating film 102 formed on the semiconductor substrate and a multiple-layered insulating film 140 provided on the interlayer insulating film 102. The semiconductor device also includes an electric conductor that extends through the multiplelayered insulating film 140 and includes a Cu film 120 and a barrier metal film 118. The barrier metal film 118 is covers side surfaces and a bottom surface of the Cu film 120. An insulating film 116 is disposed between the multiple-layered insulating film 140 and the electric conductor (i.e., Cu film 120 and barrier metal film 118).