Abstract:
A method is provided for monitoring the torque distribution in multiple drive systems, e.g., in hybrid drives. The hybrid drive includes at least two individual drives which are controlled via an engine control unit, in which a torque distribution of a setpoint torque MSETPOINT to the at least two individual drives takes place. After the torque distribution, the formation of a resulting torque MRES takes place which is compared continuously with a torque before the torque distribution.
Abstract:
The invention relates to a sensor for detecting the direction and intensity of solar insolation, particularly, for controlling an air conditioning system, having at least two sensor elements that, are assigned to the left-hand and right-hand sides of the vehicle, respectively, and are arranged on a respective face whose surfaces are, at least partially, subject to the solar insolation entering the vehicle from the left-hand and right-hand sides, respectively. To provide an improved sensor that is particularly cost effective and can be fitted simply into a vehicle to control an air conditioning system, the sensor elements are designed as temperature sensors and are each connected in a heat conducting manner to their associated surfaces, which surfaces absorb, at least, most of the solar insolation which is incident thereon.
Abstract:
A method for operating a hybrid drive device including an internal combustion engine-generator unit as a range extender, at least one electric machine for driving and for decelerating the hybrid vehicle, and a battery. During operation of the at least one electric machine, the electrical power provided by a generator of the internal combustion engine-generator unit and/or the electrical power provided by the at least one electric machine in regenerative mode for charging the battery is/are controlled and/or regulated in such a way that the electrical charging capacity of the battery is below a predefined limiting value.
Abstract:
A method for operating a hybrid drive device including an internal combustion engine-generator unit as a range extender, at least one electric machine for driving and for decelerating the hybrid vehicle, and a battery. During operation of the at least one electric machine, the electrical power provided by a generator of the internal combustion engine-generator unit and/or the electrical power provided by the at least one electric machine in regenerative mode for charging the battery is/are controlled and/or regulated in such a way that the electrical charging capacity of the battery is below a predefined limiting value.
Abstract:
A method for the fail-safe operation of a hybrid vehicle having an internal combustion engine, an electric motor, and additional vehicle assemblies. A substitute measure that then still allows the vehicle to be operated under emergency running conditions is initiated if a vehicle assembly fails. A performance quantity that is characteristic of the driving-dynamics situation in which the vehicle finds itself is recorded prior to initiating the substitute measure, and is compared to at least one limit value. The substitute measure is initiated if the limit value is exceeded or not attained. A device which includes a device for implementing such a method is also provided.
Abstract:
A method and a device are described for starting an internal combustion engine of a hybrid drive train, having an internal combustion engine and at least one additional machine, in particular an electric machine, a separating clutch, which is situated between the internal combustion engine and the additional machine, and a crankshaft angle sensor for detecting the instantaneous crankshaft angle of the internal combustion engine being provided. Arrangements are provided to perform the following operations to start the internal combustion engine when a high-voltage battery is essentially discharged, including a) the separating clutch is or has already been disengaged, b) the additional machine is accelerated, c) after conclusion of the acceleration operation of the additional machine, the separating clutch is engaged, so that the internal combustion engine is also accelerated, d) as soon as the crankshaft angle sensor system supplies a favorable crankshaft angle, the internal combustion engine is started by direct start.
Abstract:
In a method for controlling a vehicle drive unit having at least two individual drives and a vehicle control unit, a continuous torque comparison between a permissible torque MZul and a further torque is performed by the control unit. The permissible torque MZul is continuously compared to setpoint torques Msetpoint,V and Msetpoint,E for the least two individual drives.
Abstract:
A method for operating a hybrid drive system, in particular of a motor vehicle, having at least one electric machine and one internal combustion engine, a disconnecting clutch being provided between the electric machine and the internal combustion engine and a torque converter having a turbine wheel being provided between the electric machine and a hybrid drive output, the disconnecting clutch being engaged for starting the internal combustion engine. It is provided that, as a function of the rotational speed of the turbine wheel of the torque converter, a rotational speed is predefined for the electric machine such that no sudden torque change occurs at the hybrid drive output when the internal combustion engine is started.
Abstract:
A method for controlling a motor vehicle drive, in particular a hybrid drive, is provided, the motor vehicle drive having at least two individual motors. In a first method step, at least one total setpoint torque is calculated. In a second step, the at least one total setpoint torque is split into at least two individual setpoint torques of the at least two individual motors. Subsequently, in a first individual torque comparison step, the sum of the at least two individual setpoint torques is compared with the total setpoint torque. In the event of a difference by more than a predefined tolerance value, a limitation step is initiated. In this limitation step, the at least two individual setpoint torques are each multiplied by a limiting factor to generate at least two limited individual setpoint torques.
Abstract:
A method for controlling a hybrid drive of a vehicle, which includes at least one internal combustion engine and at least one electric machine, having a first clutch situated between the electric machine and the drive train of the vehicle and a second clutch situated between the electric machine and the internal combustion engine. Performance parameters of the hybrid drive are controlled as a function of the driver's intent.