摘要:
A method of making a microelectromechanical microwave vacuum tube device is disclosed. The device is formed by defining structural regions and sacrificial regions in a substrate. The structural regions have flexural members. The substrate is treated to remove the sacrificial regions and release the structural regions such that the structural regions are moveable by the flexural members. The structural regions include a device cathode, a device grid or both a device cathode and a device grid. The cathode comprises electron emitters. The device further includes an output structure where amplified microwave power is removed from the device. In the method, the cathode surface and the grid surface are moved to a position where they are substantially parallel to each other and substantially perpendicular to the substrate. The device further comprises an anode that is substantially parallel to the cathode surface and the grid surface.
摘要:
The present invention is directed to monolithic integrated circuits incorporating an oscillator element that is particularly suited for use in timing applications. The oscillator element includes a resonator element having a piezoelectric material disposed between a pair of electrodes. The oscillator element also includes an acoustic confinement structure that may be disposed on either side of the resonator element. The acoustic confinement element includes alternating sets of low and high acoustic impedance materials. A temperature compensation layer may be disposed between the piezoelectric material and at least one of the electrodes. The oscillator element is monolithically integrated with an integrated circuit element through an interconnection. The oscillator element and the integrated circuit element may be fabricated sequentially or concurrently.
摘要:
Differing metallic electrodes having the same or differing thickness are formed at different locations on a support structure and/or on a single thickness film of piezoelectric material in order to form a multiple frequency resonator device having greatly separated acoustic resonance frequencies. A plurality of multiple frequency resonators can be combined to form a blank of frequency selective devices in order to handle the many different RF bands, at widely varying frequencies, that wireless communication technologies demand today.
摘要:
A process for configuring a thin film resonator to advantageously shape a desired acoustic mode of the resonator such that the electrical and acoustic performance of the resonator is enhanced. As a result of the contouring or shaping, a minimum amount of acoustic energy occurs near the edge of the resonator, from which energy may leak or at which undesired waves may be created by a desired mode. The process is used during batch-fabrication of thin-film resonators which are used in high frequency RF filtering or frequency control applications. Utilizing photolithography, the shaping can be achieved in a manner derived from the known methods used to manufacture lens arrays. Using the process, the lateral motion of acoustic waves within the resonator may be controlled and the acoustic energy of the sound wave positioned at a desired location within the resonator.
摘要:
This invention relates to a method and apparatus for imaging acoustic fields in high-frequency acoustic resonators. More particularly, the invention is directed to a scanning RF mode microscope system that detects and monitors vibration of high frequency resonators that vibrate in the frequency range of approximately 1 MHz to 20 GHz. The system then maps with sub-Angstrom resolution vibration modes of such devices and obtains quantitative measurements of the piezoelectric properties of the materials.
摘要:
First and second wafers are micromachined by standard integrated-circuit fabrication techniques to respectively make first and second component parts of a variable capacitor. A thin flexible membrane in the first wafer is integral with and mechanically supported by the first wafer. A metal pattern on the first wafer includes a first capacitor plate on the membrane. In the second wafer, a well is formed. A metal pattern on the second wafer includes a second capacitor plate in the well. By bonding the two parts together face-to-face, the capacitor plates are positioned in spaced-apart alignment with each other. External electrical connections to the plates are made via bonding-pad portions of the metal patterns on the wafers. In response to electrical control signals, the metal plate on the membrane can be moved toward the other plate, thereby selectively changing the capacitance of the assembly.
摘要:
The present invention is directed to monolithic integrated circuits incorporating an oscillator element that is particularly suited for use in timing applications. The oscillator element includes a resonator element having a piezoelectric material disposed between a pair of electrodes. The oscillator element also includes an acoustic confinement structure that may be disposed on either side of the resonator element. The acoustic confinement element includes alternating sets of low and high acoustic impedance materials. A temperature compensation layer may be disposed between the piezoelectric material and at least one of the electrodes. The oscillator element is monolithically integrated with an integrated circuit element through an interconnection. The oscillator element and the integrated circuit element may be fabricated sequentially or concurrently.
摘要:
The present invention is directed to monolithic integrated circuits incorporating an oscillator element that is particularly suited for use in timing applications. The oscillator element includes a resonator element having a piezoelectric material disposed between a pair of electrodes. The oscillator element also includes an acoustic confinement structure that may be disposed on either side of the resonator element. The acoustic confinement element includes alternating sets of low and high acoustic impedance materials. A temperature compensation layer may be disposed between the piezoelectric material and at least one of the electrodes. The oscillator element is monolithically integrated with an integrated circuit element through an interconnection. The oscillator element and the integrated circuit element may be fabricated sequentially or concurrently.
摘要:
The effects of electromigration have been shown to lead to damage of metal electrodes of electronic devices such as thin film resonator (TFR) devices in only a few hours, for a test input power that is within the operational range of these devices. It has been determined that this failure is sensitive to the frequency of the input power. The present invention provides a method and apparatus for determining high power reliability in electronic devices, so as to enable an accurate determination of the failure time of the electronic device, and hence projected lifetime. This determination is independent from the frequency of an input power applied to the electronic device as part of the method for testing the device. Based on the above results, a TFR device has been developed, which includes a protective or electromigration-reducing layer such as titanium being deposited atop an electrode of the device. The TFR device with the modified electrode structure can operate at higher power levels and has a longer operational lifetime than what is currently available.
摘要:
A method for studying vibrational modes of an electro-acoustic device includes driving the electro-acoustic device to produce at least one vibrational mode therein, collecting phase and amplitude data from the electro-acoustic device using optical interferometry, and mapping the at least one vibrational mode based upon the collected phase and amplitude data. The phase and amplitude data may be processed to provide an instantaneous three-dimensional view of the at least one vibrational mode. Furthermore, a sequence of instantaneous three-dimensional views may be constructed to form a motion picture of the at least one vibrational mode. Additionally, collecting may include raster scanning to provide phase and amplitude data across a surface of the electro-acoustic device.