Abstract:
The invention relates to an illumination module (1) comprising a plurality of light sources (2) distributed over a light guiding plate (3) accommodating said light sources and capable of guiding light of said light sources through at least a portion of said plate. The light guiding plate has one or more out-coupling structures (4), preferably arranged around each light source, so that at least a portion of the light emitted by a first light source (2A) and at least a portion of the light emitted by a second adjacent light source (2B) mix within said light guiding plate before leaving said illumination module as a single substantially collimated mixed light beam. The invention further relates to a lamp and a display apparatus comprising such an illumination module.
Abstract:
A luminaire comprising lamellae holding means, a light source, and a set of lamellae comprising a plurality of (inclined) lamellae. The set of lamellae extends at least partially over a light emission window. The lamellae have a reflective front surface facing towards the light source, said front surface being designed to partially reflect light to the exterior and partially transmit light, for example in that the lamellae are diffusely translucent or have a perforated surface. The set of lamellae is provided with light converging means, for example a Fresnel lens, which optionally are integrated in the lamellae to prevent the luminaire becoming too bulky.
Abstract:
The invention provides a multi-beam illumination system (1) for providing an illumination image (53). The multi-beam illumination system (1) has a plurality of light sources (11) with optional collimating optics (12), arranged to generate a plurality of light beams (13); a panel (30) comprising a plurality of panel segments (32) in a panel plane (35) at a first distance (d1) and arranged to contain a plurality of segment patterns (34) on the corresponding panel segments (32); and an imaging lens array (40) comprising a plurality of imaging lenses (42) in an imaging lens plane (45) parallel to the panel plane (35). Each imaging lens (42) of the imaging lens array (40) is arranged to image a corresponding segment pattern (34) of the plurality of segment patterns (34) into a respective projection image (52) of a plurality of projection images (52). The plurality of projection images (52) overlap at a predetermined image distance (Lp) and form the illumination image (53).
Abstract:
This invention relates to a light emitting device (100) having a movable collimating unit for adjusting the output direction of light being emitted from the light emitting device. The light emitting device comprises a base unit (110), and a light output unit (120) which is engaged with the base unit. The light output unit comprises at least one light source (121) for emitting light. The light emitting device further comprises a movably arranged collimating unit (130) for adjusting the direction of the emitted light, which is arranged such that it encompasses a light output portion (125), which is arranged on the light output unit.
Abstract:
A light guide (11; 101; 111) comprising first and second oppositely arranged faces, an in-coupling portion (13a-f) for in-coupling of light from a light-source (12a-f; 95a-f; 102; 106a-c; 112a-f), and an out-coupling portion (15a-f; 103; 113a-f) located adjacent to the in-coupling portion (13a-f). The out-coupling portion (15a-f; 103; 113a-f) is configured to out-couple a primary light beam having a direction of propagation directed from a position in the in-coupling portion (13a-f) with a lower out-coupling efficiency than a secondary light beam having a direction of propagation directed from a position in the light guide (11; 101; 111) outside the in-coupling portion (13a-f). In this manner, a good mixing of light in the light guide can be achieved without imposing any particular requirements on the collimation of the in-coupled light.
Abstract:
A lighting device (100, 200, 300, 400) is disclosed. The device comprises a plurality of light sources (111, 119, 120, 211, 219, 220) providing light in different wavelengths, a collimating means (104, 204) having a receiving end (103, 203, 407) and an output end (114, 214, 409), wherein said light sources are arranged at said receiving end. The collimating means comprises a set of wavelength selective filters (109, 110, 115, 116, 117, 118, 215, 217) arranged as sub-collimators (106, 107, 108, 206, 207, 208) to each of said plurality of light sources such that, for each light source, said sub-collimator collimates the light from its light source, and said wavelength selective filter of said each light source is translucent for light from adjacent light sources of different wavelength, and a second set of wavelength selective filters comprising compensation filters (222, 224, 226, 228, 230, 232) wherein each compensation filter is arranged symmetrically with respect to corresponding part of the wavelength selective filter of said first set around a general light direction of the corresponding light source.
Abstract:
An electronic system comprises at least a base part, a power source and at least one electronic module adapted to be powered by the power source. The base part is provided with at least two parallel extending, elongated tracks being electrically conductive. At least one parameter of the electronic module is changeable by amending the distance of the electronic module to a predetermined location on the tracks.
Abstract:
Proposed is a light emitting apparatus (1) comprising a light source (5) for emitting light and a collimator (40) for arranging the light emitted in an application specific distribution. The light source comprises (i) a semiconductor device (10) capable of emitting light, (ii) a body (20) having a bottom surface (21) adjacent to the semiconductor device (10) and an opposing top surface (22), and (iii) a reflector (30) positioned adjacent the top surface (22). The light emitting apparatus (1) is characterised in that the reflector (30) has a surface larger than the bottom surface (21) of the body (20). This is especially advantageous for creating a given light beam collimation with a smaller collimator or alternatively for creating a collimator producing a significantly narrower light beam.
Abstract:
The present invention relates to a light emitting device (1) comprising a stack of a light emitting diode (LED) structure (10) and a light permeable device (20). The light permeable device (20) comprises at least a first and a second section (21, 22), color of light from said first and second section (21, 22) being different from each other. Further, the LED structure (10) comprises at least a first and a second region (11, 12) being individually controllable. The first and second region (11, 12) are associated with the first and second section (21, 22), respectively. The stack further comprises an at least partially reflecting layer (30) arranged such that light from the light permeable device (20), generated in the first and second region (11, 12), is to be mixed within the light emitting device (1).
Abstract:
The invention relates to alightsource and an illumination system. The light source (10) comprises a light emitter (20) and a light conversion element (30). The light emitter emits visible light of a first color through the light conversion element in a direction away from the light source. The light conversion element comprises a photoluminescent material (40) for converting at least a part of the light of the first color into light of a second color different from the first color. The light source further comprisescon-version material (42) for converting at least a part of ambient light impinging on the conversion material into light of a third color (Ba) different from the second color. When the light emitter emits light, the color of the light emitted is mainly a mixture of the light of the first color and light of the second color. When the light emitter does not emit light, the color of the light emitted by the light source is determined by the reflected ambient light, light of the second color and light of the third color. As such, the color of the light source can be tuned when the light emitter does not emit light and can, for example, be made substantially identical to the color of the light emitted when the light emitter emits light.