Abstract:
A spinal implant for positioning in a space formed between vertebral members. The implant includes a number of sections that are pivotally attached together at pivot axes. The pivot axes include connectors that extend through at least a portion of the sections and are configured for the sections to be pivotally attached for the implant to be flexible to facilitate insertion into the space and to be configurable to the space. One of the sections may include a receptacle that is contained within the section. The receptacle has a fixed size and shape that holds bone growth material. The fixed size and shape of the receptacle prevents the bone growth from escaping during flexing of the implant.
Abstract:
Systems, methods and devices for providing stabilization between first and second vertebrae are provided. More particularly, in one form a system includes an implant configured to be positioned in a disc space between the first and second vertebrae and a freestanding plate for engagement with extradiscal surfaces of the first and second vertebrae. The system also includes an insertion instrument with an engaging portion configured to releasably engage with the implant and the plate such that the implant and plate can be positioned together relative to the first and second vertebrae. In one aspect, an angular orientation of the implant relative to the plate is adjustable when the implant and the plate are engaged by the instrument. In this or another aspect, the implant and plate are held in a contiguous relationship when engaged by the instrument. However, different forms and applications are also envisioned.
Abstract:
A flexible spinal implant for insertion into an intervertebral disc space for sagittal and/or coronal intervertebral stabilization is provided comprising a flexible implant which enables bending of the flexible implant to facilitate insertion of the flexible spinal implant into the disc space via a spinal surgical procedure. The flexible spinal implant comprises a leading end, a trailing end flexibly connected to the leading end, a locking mechanism, wherein the implant is deformable at or about a flexible section to thereby permit a substantially straight entry of the implant into the disc space, and delivered to the selected disc space at a desired insertion angle of approach via a spinal surgical procedure. The implant can have a leading end comprising a curved or bullet shaped configuration, and the flexible section may be comprised of a flexible material or flexible sections which may be lockingly engaged.
Abstract:
Pedicle screws are secured in two columns, one along each side of the spine. Cross support rods have ends connected to pedicle screw heads. A longitudinally extending rod is supported on the cross supports and recessed in the cavity created by removal of portions of spinous processes, providing a reduced profile of the installed construct. Several types of cross supports are shown such as: arms from the screws inward to rings or yokes connecting the longitudinal rod; cross rods with ends connected to the screws and having centrally-located yokes for the longitudinal rod; cross rods with articulating longitudinal rod portions fixed or swiveled to them. These cross rods may have end portions angled posterior toward anterior to accommodate lateral positioned pedicle screws, but shorter cross rods without angled end portions enable medialized pedicle screw orientation.
Abstract:
A method for treating an open wound, such as a surgical wound, may include preparing a first composition including a platelet poor plasma (PPP), and preparing a second composition including a platelet rich plasma (PRP). A layer of the first composition may be applied within the open wound, and a layer of the second composition may be applied within the open wound over the layer of the first composition.
Abstract:
An interbody implant system is provided. The interbody implant system includes an implant having an engagement surface and an instrument including a first member and a second member that is movable relative to the first member. The first member is configured to capture the implant and the second member includes an interface configured to engage the engagement surface to releasably lock the implant in at least one orientation relative to the second member. The at least one of the engagement surface and the interface include at least one planar face. Methods of use are disclosed.
Abstract:
A flexible spinal implant for insertion into an intervertebral disc space for intervertebral stabilization is provided comprising a flexible implant section which enables bending of the implant body to facilitate insertion of the flexible spinal implant into the disc space via a spinal surgical procedure. The flexible spinal implant comprises a leading end, a trailing end and a flexible mid section connecting the leading end and the trailing end, wherein the implant is deformable at or about the flexible mid section to thereby permit a substantially straight entry of the implant into the disc space, and delivered to the selected disc space at a desired insertion angle of approach via a spinal surgical procedure. The implant can have a leading end comprising a curved or bullet shaped configuration, and the flexible mid section may be comprised of a flexible material.
Abstract:
In some aspects, the spinal plates of the present disclosure are sized and shaped for use in a spinal level adjacent to a previously treated spinal level. The spinal plates of the present disclosure are generally no-profile or low-profile plates. That is, the spinal plates are sized and shaped for positioning entirely within the disc space between adjacent vertebrae such that the plates either do not extend beyond the outer boundaries of the vertebrae (no profile) or extend only slightly beyond the outer boundaries of the vertebrae (low profile). The spinal plates of the present disclosure are also configured to receive fixation members, such as bone screws, in a hyper-angulated orientation. The hyper-angulated screws facilitate optimal cortical bone purchase or penetration of the adjacent vertebrae to fixedly secure the spinal plates to the vertebrae.
Abstract:
Pedicle screws are secured in two columns, one along each side of the spine. Cross support rods have ends connected to pedicle screw heads. A longitudinally extending rod is supported on the cross supports and recessed in the cavity created by removal of portions of spinous processes, providing a reduced profile of the installed construct. Several types of cross supports are shown such as: arms from the screws inward to rings or yokes connecting the longitudinal rod; cross rods with ends connected to the screws and having centrally-located yokes for the longitudinal rod; cross rods with articulating longitudinal rod portions fixed or swiveled to them. These cross rods may have end portions angled posterior toward anterior to accommodate lateral positioned pedicle screws, but shorter cross rods without angled end portions enable medialized pedicle screw orientation.
Abstract:
An interbody implant system is provided. The interbody implant system includes an implant having an engagement surface and an instrument including a first member and a second member that is movable relative to the first member. The first member is configured to capture the implant and the second member includes an interface configured to engage the engagement surface to releasably lock the implant in at least one orientation relative to the second member. The at least one of the engagement surface and the interface include at least one planar face. Methods of use are disclosed.