摘要:
Systems and methods for neutralizing pathogen-contaminated mail pieces via variable frequency microwave processing are provided. Mail pieces are initially screened to identify suspicious characteristics or indications of potentially harmful contents. Mail pieces are swept with variable frequency microwaves selected to neutralize pathogens contained within each mail piece without harming the mail piece or other contents thereof. The temperature of each mail piece may be monitored during microwave processing to identify mail pieces containing potentially harmful substances and/or devices. Mail pieces can be irradiated via additional forms of radiation to neutralize pathogenic material on outside surfaces thereof.
摘要:
An apparatus for reducing arcing and localized heating as a result of applying microwave energy to a microelectronic substrate having electronic components thereon is provided. A microwave furnace having a chamber is configured to secure a microelectronic substrate therewithin. The microelectronic substrate is electrically interconnected with a ground connected to an interior wall of the microwave furnace. A holder for securing a microelectronic substrate during the application of microwave energy and for providing the necessary electrical connections for grounding components and circuitry thereon is also provided. The holder may have a heat sink for protection against heat build-up and for maintaining a microelectronic substrate in a substantially flat orientation during microwave processing.
摘要:
The present invention provides a process for assembling electronics which allows for rapid heating and fast curing, and avoids subjecting the components to potentially damaging cure conditions. The process includes applying conductive or non-conductive curable thermoplastic or thermosetting resins, having adhesive properties, to a surface of the substrate or electrical component or both. One or more electrical components may be mounted on the substrate using the adhesive properties of the resin. The resin is then subjected to variable frequency microwave irradiation selected to cure the resin without adversely affecting the substrate or electrical components.
摘要:
The bonding of components is facilitated by a conductive pattern which generates heat upon being irradiated with microwave or RF energy. The electrically conductive pattern is positioned on a first component surface and a curable resin having adhesive properties is applied thereto. A second component surface is placed in contacting relation with the resin and the conductive pattern is irradiated with microwave or RF energy to facilitate curing wherein the components are bonded together along the pattern. The conductive pattern can be utilized without adhesive resin wherein heat generated via the application of microwave or RF energy causes components to fuse together. The conductive pattern can be enveloped by polymeric material, wherein the polymeric material becomes the adhesive for bonding components when microwave or RF energy is applied.
摘要:
Rapid curing of polymer layers on semiconductor substrates is facilitated using variable frequency microwave energy. A semiconductor substrate having a polymer layer thereon is placed in a microwave furnace cavity, and then swept with a range of microwave frequencies. The range of frequencies includes a central frequency selected to rapidly heat the polymer layer. The range of frequencies is selected to generate a plurality of modes within the cavity. The sweep rate is selected so as to avoid damage to the semiconductor substrate and/or any components thereon. The microwave power may be adjusted during frequency sweeping to control the temperature of the polymer layer and the semiconductor substrate. Effluent produced during the curing of the polymer layer may be removed from the furnace cavity. The extent of cure of the polymer layer may be determined by detecting power reflection for each microwave frequency within the range to provide power reflection data, and then comparing the power reflection data with a predetermined set of power reflection data.
摘要:
Rapid curing of polymer layers on semiconductor substrates is facilitated using variable frequency microwave energy. A semiconductor substrate having a polymer layer thereon is placed in a microwave furnace cavity, and then swept with a range of microwave frequencies. The range of frequencies includes a central frequency selected to rapidly heat the polymer layer. The range of frequencies is selected to generate a plurality of modes within the cavity. The sweep rate is selected so as to avoid damage to the semiconductor substrate and/or any components thereon. The microwave power may be adjusted during frequency sweeping to control the temperature of the polymer layer and the semiconductor substrate. Effluent produced during the curing of the polymer layer may be removed from the furnace cavity. The extent of cure of the polymer layer may be determined by detecting power reflection for each microwave frequency within the range to provide power reflection data, and then comparing the power reflection data with a predetermined set of power reflection data.
摘要:
In-situ and post-cure methods of joining optical fibers and optoelectronic components are provided. An in situ method of joining an optical fiber to an optoelectronic component includes positioning an optical fiber and optoelectronic component in adjacent relationship such that light signals can pass therebetween, applying a curable resin having adhesive properties to an interface of the optical fiber and the optoelectronic component, aligning the optical fiber and optoelectronic component relative to each other such that signal strength of light signals passing between the optical fiber and the optoelectronic component is substantially maximized, and irradiating the interface with non-ionizing radiation in RF/microwave energy to rapidly cure the resin. A post-cure method of joining an optical fiber to an optoelectronic component includes positioning an optical fiber and optoelectronic component in adjacent relationship such that light signals can pass therebetween, applying a curable resin having adhesive properties to an interface of the optical fiber and the optoelectronic component, aligning the optical fiber and optoelectronic component relative to each other such that the signal strength of light signals passing between the optical fiber and the optoelectronic component is substantially maximized, and irradiating the interface with microwave energy to partially cure the resin. The joined components are then transferred to a curing oven to fully cure the adhesive resin.
摘要:
Systems and methods for monitoring workpiece and workpiece material characteristics using microwave energy are disclosed. A system includes a chamber, including means for generating variable frequency microwave energy; means for positioning a workpiece within the chamber; means for subjecting the workpiece to a plurality of different microwave frequencies; and means for monitoring characteristics of the workpiece. One or more characteristics of a workpiece, or workpiece material, may be monitored by positioning the workpiece within a chamber having means for generating variable frequency microwave energy; subjecting the workpiece to microwave irradiation at a plurality of frequencies; detecting power reflection for each one of the plurality of microwave frequencies to provide power reflection data; and comparing the power reflection data to a predetermined set of power reflection data. The result of signature analysis can be coupled with a product process controller to achieve a real-time feedback control on monitoring and adjusting of process parameters.