Abstract:
An apparatus for shielding adjacent batteries during testing includes a shell with partitions to form an array of pockets, and a cover with shields. When a cover is placed in a closed position on top of the shell, each shield would contact a corresponding partition to completely isolate two batteries placed in two pockets adjacent to the shield and partition. In this manner, even if a battery catches fire or leaks, the partition and the shield minimizes the effect on an adjacent battery.
Abstract:
Embodiments of the present invention are directed to a gas distribution system which distributes the gas more uniformly into a process chamber. In one embodiment, a gas distribution system comprises a gas ring including an outer surface and an inner surface, and a gas inlet disposed at the outer surface of the gas ring. The gas inlet is fluidicly coupled with a first channel which is disposed between the outer surface and the inner surface of the gas ring. A plurality of gas outlets are distributed over the inner surface of the gas ring, and are fluidicly coupled with a second channel which is disposed between the outer surface and the inner surface of the gas ring. A plurality of orifices are fluidicly coupled between the first channel and the second channel. The plurality of orifices are spaced from the gas inlet by a plurality of distances, and have sizes which vary with the distances from the gas inlet as measured along the first channel, such that the size of the orifice increases with an increase in the distance between the orifice and the gas inlet as measured along the first channel.
Abstract:
A semiconductor wafer processing substrate support assembly, comprises a substrate support platform having a centrally disposed recess, coupled to a base disposed above the centrally disposed recess, a plate disposed above the base, and a substrate support disposed above the plate. The substrate support assembly further comprises a plurality of o-rings having a plurality of lobes, wherein a first lobed o-ring of the plurality of lobed o-rings is disposed between the support platform and the base, a second lobed o-ring is disposed between the base and the plate, and a third lobed o-ring is disposed between the plate and the substrate support. Moreover, the plurality of lobed o-rings are utilized in the support assembly for reducing the number of o-rings required in the support assembly.
Abstract:
A modular lift-pin assembly includes a lift-pin having a distal end, a connector, and an actuator pin. The connector includes an actuator end having a plurality of catch fingers disposed around the actuator end. Each of the plurality of catch fingers includes a lip extending radially inwards. A lift-pin end is coupled to the distal end of the lift-pin, and the actuator pin is coupled to the actuator end of the connector.
Abstract:
A modular lift-pin assembly comprises a lift-pin having a distal end and a connector having a lift-pin end and an actuator end. The lift-pin end of the connector is coupled to the distal end of the lift-pin and an actuator pin is then coupled to the actuator end of the connector to actuate the lift-pin through the connector.
Abstract:
Embodiments of the present invention are directed to a gas distribution system which distributes the gas more uniformly into a process chamber. In one embodiment, a gas distribution system comprises a gas ring including an outer surface and an inner surface, and a gas inlet disposed at the outer surface of the gas ring. The gas inlet is fluidicly coupled with a first channel which is disposed between the outer surface and the inner surface of the gas ring. A plurality of gas outlets are distributed over the inner surface of the gas ring, and are fluidicly coupled with a second channel which is disposed between the outer surface and the inner surface of the gas ring. A plurality of orifices are fluidicly coupled between the first channel and the second channel. The plurality of orifices are spaced from the gas inlet by a plurality of distances, and have sizes which vary with the distances from the gas inlet as measured along the first channel, such that the size of the orifice increases with an increase in the distance between the orifice and the gas inlet as measured along the first channel.
Abstract:
The present invention provides exemplary antenna coil assemblies and substrate processing chambers using such assemblies. In one embodiment, an antenna coil assembly (100) for a substrate processing chamber includes an antenna coil (102) disposed in a frame (104). The frame includes a plurality of spaced apart tabs (120) around a periphery of the frame, with the coil coupled to the frame at the tabbed locations. At least one notch (122) is provided between each pair of adjacent tabs. The notches are adapted to facilitate thermal expansion and contraction of the frame at the notched locations to reduce stresses on the frame and coil connections.
Abstract:
Embodiments of the present invention are directed to a gas distribution system which distributes the gas more uniformly into a process chamber. In one embodiment, a gas distribution system comprises a gas ring including an outer surface and an inner surface, and a gas inlet disposed at the outer surface of the gas ring. The gas inlet is fluidicly coupled with a first channel which is disposed between the outer surface and the inner surface of the gas ring. A plurality of gas outlets are distributed over the inner surface of the gas ring, and are fluidicly coupled with a second channel which is disposed between the outer surface and the inner surface of the gas ring. A plurality of orifices are fluidicly coupled between the first channel and the second channel. The plurality of orifices are spaced from the gas inlet by a plurality of distances, and have sizes which vary with the distances from the gas inlet as measured along the first channel, such that the size of the orifice increases with an increase in the distance between the orifice and the gas inlet as measured along the first channel.