Abstract:
A composite fiber component for a rotor blade of a wind power plant including a first sandwich core and a second sandwich core arranged next to each other, each having an inside facing a rotor blade interior and an outside facing a rotor blade exterior. A first fiber-containing laminate layer is arranged on the inside of the first sandwich core and on the outside of the second sandwich core. A second fiber-containing laminate layer is arranged on the outside of the first sandwich core and on the outside of the second sandwich core. And, a third fiber-containing laminate layer is arranged on the inside of the first sandwich core and on the inside of the second sandwich core. Also disclosed is a rotor blade for a wind power plant having a composite fiber component as disclosed.
Abstract:
A system for transporting and testing a crane includes a crane, a transporting frame and a foundation. A first connecting mechanism is provided for establishing a releasable connection between the crane and the transporting frame. A second connecting mechanism is provided for establishing a releasable connection between the transporting frame and the foundation. In a starting state, the crane, the transporting frame and the foundation are separate from one another. In a transporting state, the crane is connected to the transporting frame. In a testing state, the crane is connected to the transporting frame and the transporting frame is connected to the foundation. The invention also relates to a corresponding method. The invention makes it possible for the crane to be assembled, and tested, at a site remote from an offshore wind turbine.
Abstract:
A method for anchoring a foundation structure (3) in a seabed (1) that includes introducing a receiving structure (6) into the seabed, lowering a support post (5) of the foundation structure (3) into the receiving structure (6), producing a connection between the receiving structure (6) and foundation structure (3) by filling the receiving structure (6) with a curable filling compound (7), and curing the curable filling compound (7), wherein the support post (5) is fixed in the receiving structure (6) prior to filling the receiving structure (6) with the curable filling compound (7). Also disclosed is a foundation structure (3) for an offshore wind turbine, for anchoring in a seabed (1), which includes at least one support post (5) to be introduced into a receiving structure (6), which has fixing elements (11, 20) for temporarily fixing in the receiving structure (6) before grouting is carried out.
Abstract:
A method for installing tower fittings by introducing at least two separate supply modules into a wind turbine tower, wherein a separate supply module structurally includes one segment each of at least two system components of the wind turbine tower, and wherein an upper segment end is arranged on an upper edge, and a lower segment end on a lower edge, of the supply module, including: arranging the upper edge of a first separate supply module at an upper end of the wind turbine tower; connecting an upper segment end of the first separate supply module to a lower segment end of a corresponding system component of a second separate supply module; and arranging the upper edge of the second separate supply module at the upper end of the wind turbine tower.
Abstract:
A wind farm comprises a plurality of wind turbines connected to a network internal to the wind farm, a network feed-in point in the network internal to the wind farm for feeding electrical power into a supply network, a control device associated with the network feed-in point designed to control the wind turbines feeding power into the supply network by the network feed-in point on the basis of measured values recorded at the network feed-in point, and at least one additional network feed-in point having an additional control device designed to control the wind turbines feeding power into the supply network by the additional network feed-in point on the basis of measured values recorded at the additional network feed-in point, wherein the network internal to the wind farm is designed to variably connect at least one wind turbine to one of the plurality of network feed-in points.
Abstract:
The invention relates to a system and to a method for producing a rotor-blade spar cap with pultruded rods made of a fiber-reinforced material. According to the invention, the system includes at least one retaining apparatus for rotatably mounting at least one rod-layer roll with a rolled-up layer of pultruded rods arranged one beside the other, and a laminating mold for receiving layers of pultruded rods. The system further includes at least one guiding apparatus and additionally at least one trimming apparatus. The guiding apparatus is designed to guide onto the laminating mold a layer of pultruded rods which has been unrolled from a rod-layer roll. And, the trimming apparatus, for trimming the layers of pultruded rods, has a sawing apparatus and/or a milling apparatus.
Abstract:
A method for manufacturing a composite fiber component for a rotor blade of a wind turbine that includes introducing a fiber material into a mold, supplying a flowable matrix material via a longitudinally extending runner of the mold using a vacuum infusion method such that the fiber material is soaked with matrix material from the runner and the matrix material flows transversely to the longitudinal extension of the runner such that a first region of the fiber material is substantially soaked with matrix material from a first section of the runner and a second region of the fiber material is substantially soaked with matrix material from a second region of the runner, and matrix material flow rates are set for the first section and the second section of the runner depending on thicknesses of the fiber material in the first region and the second region of the runner, respectively.
Abstract:
The invention relates to a test bench (1) for testing a drive train of a wind turbine, comprising a drive device (40) for introducing test power into the drive train, which can be detachably connected to a drive train to be tested. The invention further relates to a method for testing a drive train of a wind turbine by way of a test bench (1), and to a drive train of a wind turbine. The test bench (1) according to the invention is characterized in that the drive device (40) for testing a drive train is or will be fitted and mounted on or to the drive train so as to be removable, wherein most of the weight of the drive device (40) is borne by the drive train when the drive device (40) is fitted or mounted.
Abstract:
Wind farm comprising a farm master (1) and a plurality of wind energy installations (4). The farm master (1) has a controller (15) with an input for a control parameter for power supplied to a grid and transmits desired value specifications to a local controller (5) of the wind energy installations (4). According to the invention, the local controller (5) has dual structure and comprises a desired value channel (6), to which the desired value specification is applied by the farm master (1) and which is designed to output a stationary reactive power desired value, and a responsive channel (7) comprising an autonomous controller (75), to which no desired value specification is applied by the farm master (1) and to which an actual voltage of the particular wind energy installation (4) is applied via a washout filter (71). The autonomous controller (75) with the washout filter (71) enables a fast and dependent response to transient disturbances, in particular voltage spikes and voltage dips as a result of a short circuit. The individual wind energy installation and the wind farm as a whole therefore gain a behaviour which is identical to a synchronous generator and is very favourable for grid stability in the event of voltage disturbances.
Abstract:
A method for packaging a large component into a protective case, which has a first and second reclosable access and a plurality of protective-case parts, wherein the large component has an access opening, comprising the following steps: providing prefabricated protective-case parts; attaching the protective-case parts to the large component; welding the transitions between the protective-case parts; shrinking the protective case; and arranging the first reclosable access in the protective case over the access opening. The packaging process is significantly accelerated compared to the known methods due to the prefabrication of the protective-case parts before the start of the method. Furthermore, the prefabrication provides the advantage that the prefabricated parts can be produced in series. As a result, the protective-case parts for several large components of the same type can be produced or purchased more cheaply.