Abstract:
A process is disclosed in which low energy electrons are used chemically to graft phosphorous or halogen-rich double bonded molecules and the like into natural and synthetic materials to render the same flame retarding.
Abstract:
This disclosure is concerned with novel techniques for shielding electron-produced scattered radiation in systems wherein a web or sheet is passed longitudinally through an electron irradiation processing region or zone, through the use of a shielded enclosure comprising longitudinally extending shielded-wall collimator slots operating in conjunction with cavity shield traps and critical angles of web-guiding inlet and outlet feed that insure minimal irradiation escape while providing a minimal volume for oxygen-limiting in the irradiation processing zone.
Abstract:
This disclosure deals with a new process and apparatus for using a critically adjusted electron beam to cure protective and decorative coatings, including opaque, heavily pigmented coatings, on paper, fabric and other thin substrates which are sensitive to heat or various forms of radiation. The process utilizes restricted dose, energy and process rates to obviate degradation of the substrate during curing and to achieve previously unattainable line speeds in the curing of coatings on products of web, sheet and filamentary geometry.
Abstract:
This disclosure involves a novel process for instantaneous electron-beam curing of very thin low viscosity, solventless coatings upon rough, irregular or textured surfaces of a substrate, such as paper or the like, that, through rather critical timing and energy adjustment procedures, causes the coating firmly to adhere to the surface before the coating can conform to the roughness or texture contour, and thereby providing a solidified very smooth outer surface for the substrate that is particularly useful for metalization and other finished layerings.
Abstract:
This disclosure is concerned with a method of transfer-coating electron-beam-curable materials, by applying such materials to the surface of a cooled drum, either through a sheet or web carrying the same over the drum or from the drum surface itself, curing the material against the drum at a region of electron-beam radiation directed thereupon and releasing the cured material from the drum surface; and with the latter, where desired, reflecting radiation back into the material being cured.