摘要:
The detection of specific nucleic acid sequences using electrochemical readout would permit the rapid and inexpensive detection and identification of bacterial pathogens and the analysis of human genes. A new assay developed for this purpose is described that harnesses an electrocatalytic process to monitor nucleic acid hybridization. Furthermore, the new assay when used on nanoscale electrodes, provides ultrasensitive detection of nucleic acids.
摘要:
Methods and devices for magnetic profiling of target particles in a flow. There are a plurality of flow rate-reducing structures in a flow chamber. Each flow rate-reducing structure is provided with a localized magnetic attractive force, the magnetic attractive force defining a capture zone in the vicinity of the flow rate-reducing structure. The size of capture zones may be variable for different locations within the device. The magnetic attractive force, in the capture zone, is sufficiently high to overcome the drag force on a given subset of the target particles to promote capture of any particles belonging to the subset of the target particles in the capture zone. Different target particles having different magnetic susceptibility are captured in different capture zones.
摘要:
There is described herein compounds comprising a mitochondrial penetrating peptide (MPP) conjugated to an anticancer compound, and their method of use.
摘要:
There is described herein compounds comprising a mitochondrial penetrating peptide (MPP) conjugated to an anti-cancer compound, and their method of use.
摘要:
The detection of specific DNA sequences using electrochemical readout would permit the rapid and inexpensive detection and identification of bacterial pathogens and the analysis of human genes. A new assay developed for this purpose is described that harnesses an electrocatalytic process to monitor DNA hybridization.
摘要:
The detection of specific nucleic acid sequences using electrochemical readout would permit the rapid and inexpensive detection and identification of bacterial pathogens and the analysis of human genes. A new assay developed for this purpose is described that harnesses an electrocatalytic process to monitor nucleic acid hybridization. Furthermore, the new assay when used on nanoscale electrodes, provides ultrasensitive detection of nucleic acids.