Abstract:
According to at least one aspect, a delta sigma modulator circuit is provided. The delta sigma modulator circuit includes a first signal processor circuit configured to receive an input signal and a feedback signal and generate a processed signal using the input signal and the feedback signal, a quantizer configured to generate a digital code using the processed signal, a second signal processor circuit configured to receive the digital code, segment the digital code to form a segmented digital code that is smaller in size than the digital code, and generate a rotated digital code using the segmented digital code at least in part by rotating the segmented digital code to compensate for an excess loop delay in the circuit, and an digital-to-analog converter (DAC) configured to receive the rotated digital code and generate the feedback signal using the rotated digital code.
Abstract:
A sigma-delta modulator includes a processing circuit, a quantizer, a truncater and a feedback circuit. The processing circuit receives an input signal and an analog information and generates an integrated signal by perform an integration upon a difference between the input signal and the analog information. The quantizer includes a successive approximation register (SAR) analog-to-digital converter (ADC) for receiving the integrated signal and generating a digital information according to the integrated signal. The truncater receives the digital information and generates a truncated information according to the digital information. The feedback circuit generates the analog information to the processing circuit according to the truncated information, wherein an order of the truncater is lower than an order of the integration.
Abstract:
A loading stage for outputting an amplified differential output, including: a noise source inducing noises originally located in a first frequency band, and a first modulating device coupled to the noise source for modulating the noises into a second frequency band from the first frequency band.
Abstract:
A processing apparatus for calibrating an analog filter of a communication device in a digital domain is disclosed, wherein the analog filter is arranged to perform a filtering operation upon a communication signal in an analog domain. The processing apparatus includes a signal processing circuit and a digital filter. The signal processing circuit is used for transforming the communication signal between the digital domain and the analog domain. The digital filter is coupled to the signal processing circuit, and used for performing a filtering operation upon the communication signal in the digital domain, wherein a frequency response of the digital filter is arranged to compensate a frequency response of the analog filter according to at least a compensation parameter generated with reference to a frequency-related characteristic of the analog filter.
Abstract:
An operational amplifier is disclosed. The operational amplifier comprises an input stage and a loading stage. The input stage receives a differential input signal pair corresponding to a first frequency band. The loading stage is coupled to the input stage. The loading stage outputs an amplified differential output at output nodes. The loading stage comprises a flicker noise source and a modulating device. The modulating device is coupled to the flicker noise source. The modulating device modulates flicker noises into a second frequency band. The modulating device is not within a signal path.
Abstract:
According to at least one aspect, a delta sigma modulator circuit is provided. The delta sigma modulator circuit includes a first signal processor circuit configured to receive an input signal and a feedback signal and generate a processed signal using the input signal and the feedback signal, a quantizer configured to generate a digital code using the processed signal, a second signal processor circuit configured to receive the digital code, segment the digital code to form a segmented digital code that is smaller in size than the digital code, and generate a rotated digital code using the segmented digital code at least in part by rotating the segmented digital code to compensate for an excess loop delay in the circuit, and an digital-to-analog converter (DAC) configured to receive the rotated digital code and generate the feedback signal using the rotated digital code.
Abstract:
A sigma-delta modulator includes a front portion and a hybrid portion to form a loop filter. The front portion includes integrator(s) and feed-forward path(s), and is arranged to provide a front signal by combining signals of the integrator(s) and feed-forward path(s). The hybrid portion is coupled to the front portion, and arranged to provide a filtered signal by combining an integration of the front signal and a weighting of the front signal. The filtered signal is quantized, converted from digital to analog, and fed back to the loop filter.
Abstract:
A signal processing system having different power domains is provided. The signal processing system has a first amplifier circuit operating under a first power domain; a second amplifier circuit operating under a second power domain and having a feedback configuration; a first impedance unit, coupled between an output node of the first amplifier circuit and a first input node of the second amplifier circuit; and a bias current generating circuit, coupled to the first input node of the second amplifier circuit, for providing a bias current to thereby reduce a DC current flowing through a feedback path of the second amplifier unit.
Abstract:
A loading stage for outputting an amplified differential output, including: a noise source inducing noises originally located in a first frequency band, and a first modulating device coupled to the noise source for modulating the noises into a second frequency band from the first frequency band.
Abstract:
A sigma-delta modulator includes a front portion and a hybrid portion to form a loop filter. The front portion includes integrator(s) and feed-forward path(s), and is arranged to provide a front signal by combining signals of the integrator(s) and feed-forward path(s). The hybrid portion is coupled to the front portion, and arranged to provide a filtered signal by combining an integration of the front signal and a weighting of the front signal. The filtered signal is quantized, converted from digital to analog, and fed back to the loop filter.