Abstract:
The invention provides a high module carbon fiber and a fabrication method thereof. The high module carbon fiber includes the product fabricated by the following steps: subjecting a pre-oxidized carbon fiber to a microwave assisted graphitization process, wherein the pre-oxidized carbon fiber is heated to a graphitization temperature of 1000-3000° C. for 1-30 min. Further, the high module carbon fiber has a tensile strength of between 2.0-6.5 GPa and a module of between 200-650 GPa.
Abstract:
The invention discloses a filtration material for desalination, including a support layer, and a desalination layer formed on the support layer, wherein the desalination layer is a fiber composite membrane and includes at least one water-swellable polymer. The water-swellable polymer is made of hydrophilic monomers and hydrophobic monomers, and the hydrophilic monomers include ionic monomers and non-ionic monomers, and the ionic monomers include cationic monomers and anionic monomers.
Abstract:
An activated carbon fiber for fabricating a supercapacitor electrode and its precursor material are provided. The precursor material of the activated carbon fiber includes polyacrylonitrile (PAN) and a polymer having formula (I): wherein R1 is cyano, phenyl, acetate, or methoxycarbonyl, R2 is R3 is C1-7 alkyl, X is chlorine, bromine, tetrafluoroborate (BF4), hexafluorophosphate (PF6), or NH(SO2CH3)2, and m/n is 1-99/99-1.
Abstract:
The present invention provides a conveyor belt fabricated from a gray cloth weaved from tetragonal fibers. The conveyor belt of the present invention reduces the amount of rubber to achieve desired lightweight, with more preferable tensile strength and elongation at break than conveyor belts fabricated from circular fibers.
Abstract:
The invention discloses a filtration material for desalination, including a support layer, and a desalination layer formed on the support layer, wherein the desalination layer is a fiber composite membrane and includes at least one water-swellable polymer. The water-swellable polymer is made of hydrophilic monomers and hydrophobic monomers, and the hydrophilic monomers include ionic monomers and non-ionic monomers, and the ionic monomers include cationic monomers and anionic monomers.
Abstract:
The present invention provides a new tetragon fiber and a method for fabricating the same. The present invention includes: heating a thermoplastic material, extruding it from a tetragon-shaped nozzle, passing it through an airless zone, then cooling and solidifying to form threadlike substances, rolling up then processing the threadlike substances to form fibers with tetragon cross sections. The fabrics of present invention comprises a property of fine air-tightness.
Abstract:
A nanofiber and fabrication methods thereof. The method for fabricating the nanofiber includes preparing an electrospinning composition and performing an electrospinning process employing the electrospinning composition. Particularly, the electrospinning composition includes a polymer and an additive as a uniform solution in an organic solvent, wherein the additive renders the electronic characteristic of the polymer.
Abstract:
Fibers of square cross sections are presented in the invention. The square fiber leads to higher packing density and results in higher wind resistance in fabrics as compared to the conventional round fibers and other polygonal fibers. Therefore, the square fiber is more suitable for manufacture of the windproof clothing. In addition, the square fibers exhibit higher luster than the round fibers and other polygonal fibers due to the flat and shiny fiber surface.
Abstract:
Improved power MOSFET structure, and fabrication process are disclosed in this invention to achieve higher breakdown voltage and improved device ruggedness. The power transistor includes a core cell area which includes a plurality of power transistor cells and a termination area. The power transistor further includes an outer pickup guarding ring, disposed in the termination area guarding the core cell area, for picking up free charged-particles generated in the termination area for preventing the free charged particles from entering the core cell area. In another preferred embodiment, the power transistor further includes an inner pickup guarding fence and blocks, disposed between the termination area and the core cell area for picking up free charged-particles not yet picked up by the outer pickup guarding ring for preventing the free charged particles from entering the core cell area.
Abstract:
Disclosed is a method to manufacture a carbon composite structure. First, a polymer nano fiber net is provided. The polymer nano fiber net is thermal oxidized to form an oxidized nano fiber net. The oxidized nano fiber net and an oxidized micro fiber net are stacked and impregnated in a resin. The resin is oxidized. Finally, the oxidized nano fiber net, the oxidized micro fiber net, and the oxidized resin are carbonized at a high temperature to form the carbon composite structure.