Abstract:
A device for stabilizing a vehicle after a collision, including a control device having a regulation algorithm, a sensor system for recording various quantities that describe the vehicle state, and an actuator for carrying out a stabilization intervention. The driving state of the vehicle is monitored for the occurrence of a collision, a setpoint value is calculated for a vehicle movement quantity, the setpoint value being at least partly independent of the steering instruction of the driver, and the vehicle movement quantity of the vehicle is regulated to this setpoint value in the case of a collision.
Abstract:
A device for stabilizing a vehicle after a collision, including a control device having a regulation algorithm, a sensor system for recording various quantities that describe the vehicle state, and an actuator for carrying out a stabilization intervention. The driving state of the vehicle is monitored for the occurrence of a collision, a setpoint value is calculated for a vehicle movement quantity, the setpoint value being at least partly independent of the steering instruction of the driver, and the vehicle movement quantity of the vehicle is regulated to this setpoint value in the case of a collision.
Abstract:
In a method for automatically correcting a state variable of a vehicle, in the event of the vehicle having departed from the predefined lane a vehicle control system is re-parameterized in such a way that an intervention predefined by the driver is converted in a reduced manner into a change in a vehicle state variable.
Abstract:
A method for influencing the direction of travel of a vehicle. In order to lower the risk of accidents in driving situations in which the driver reacts incorrectly, for example because of being surprised, it is provided that the driving operation be monitored in reference to the occurrence of an event due to which the travel direction of the vehicle changes, deviating from the travel direction specified at the steering wheel, and when such an event is detected that an automatic intervention in the driving operation be performed whereby the vehicle is moved back approximately into the original direction of travel in which it was moving before the event occurred.
Abstract:
A method for operating a hydraulically working brake system of a vehicle, in particular a motor vehicle, having at least one brake line assigned to at least one wheel brake, the brake line being connected or connectable via a switchable valve to the high pressure side of a pump unit for brake fluid. It is provided that the valve is closed when an unexpected pressure drop is detected in the brake line. Also described is a brake system for a vehicle, in particular a motor vehicle.
Abstract:
In a method for deactivating a safety function in a motor vehicle after being activated, the safety function may be deactivated by the driver only after a dead time has elapsed.
Abstract:
The invention provides a process for preparing organic nanoparticles comprising the steps of: (a) preparing a solution comprising an unsaturated polyester and/or a vinyl ester resin, an initiator and a hydrophobic monomer; (b) emulsifying the solution obtained in step (a) in an aqueous phase; and thereafter (c) curing the emulsified solution. The invention further provides organic nanoparticles obtainable by the process according to the invention; various uses of said nanoparticles; and paper, dye compositions and toner compositions comprising said nanoparticles.
Abstract:
A method and device for actuating an active and/or passive motor vehicle safety system in a driving situation in which the vehicle executes a rotary movement about the vertical axis of the vehicle. A variable describing the rotary motion is measured, and this variable is processed by a mathematical model, which determines information therefrom about the future rotary motion of the vehicle. This information in turn may be used to control the vehicle safety systems as a function of the situation and prepare them for a possibly imminent collision.
Abstract:
A method for stabilizing a vehicle in a transverse direction, in which: for a first braking force distribution in which each vehicle wheel is braked using the maximum braking force transmittable to the road surface in the current driving situation, the yawing moment acting on the vehicle is ascertained; for at least a second braking force distribution that differs from the first braking force distribution in that at least one wheel is not braked using the maximum braking force, the yawing moment acting on the vehicle is ascertained; a setpoint yawing moment is ascertained; and from at least the first and second braking force distributions, the braking force distribution whose associated yawing moment comes closest to the setpoint yawing moment is set at the vehicle.
Abstract:
A method for influencing the direction of travel of a vehicle. In order to lower the risk of accidents in driving situations in which the driver reacts incorrectly, for example because of being surprised, it is provided that the driving operation be monitored in reference to the occurrence of an event due to which the travel direction of the vehicle changes, deviating from the travel direction specified at the steering wheel, and when such an event is detected that an automatic intervention in the driving operation be performed whereby the vehicle is moved back approximately into the original direction of travel in which it was moving before the event occurred.