Abstract:
This invention relates to prosthetic cardiac and venous valves and a single catheter device and minimally invasive techniques for percutaneous and transluminal valvuloplasty and prosthetic valve implantation.
Abstract:
This invention relates to prosthetic cardiac and venous valves and a single catheter device and minimally invasive techniques for percutaneous and transluminal valvuloplasty and prosthetic valve implantation.
Abstract:
A device for treating a damaged tissue includes an expandable scaffold positionable in a portion of a luminal tissue structure of a mammal; and maintained via stent technology, wherein the scaffold is comprised of electrospun fibers composed of a biodegradable compound. The scaffold serves as a temporary template that allows the tissue to be rebuilt.
Abstract:
This invention relates to prosthetic cardiac and venous valves and a single catheter device and minimally invasive techniques for percutaneous and transluminal valvuloplasty and prosthetic valve implantation.
Abstract:
A metal balloon catheter having a main tubular body, a metal balloon proximate a distal end of the main tubular body, a central annulus extending along an entire longitudinal aspect of the catheter for accommodating a guidewire therethrough and an inflation annulus adjacent the central annulus which extends along the longitudinal axis of the main tubular body and terminates in fluid flow communication with an inflation chamber of the metal balloon. The metal balloon catheter may be either unitary integral metal catheter in which the main tubular body and the balloon are fabricated of metal, or it may consist of a polymeric main tubular body and a metal balloon.
Abstract:
Implantable in vivo sensors used to monitor physical, chemical or electrical parameters within a body. The in vivo sensors are integral with an implantable medical device and are responsive to externally or internally applied energy. Upon application of energy, the sensors undergo a phase change in at least part of the material of the device which is then detected external to the body by conventional techniques such as radiography, ultrasound imaging, magnetic resonance imaging, radio frequency imaging or the like. The in vivo sensors of the present invention may be employed to provide volumetric measurements, flow rate measurements, pressure measurements, electrical measurements, biochemical measurements, temperature, measurements, or measure the degree and type of deposits within the lumen of an endoluminal implant, such as a stent or other type of endoluminal conduit. The in vivo sensors may also be used therapeutically to modulate mechanical and/or physical properties of the endoluminal implant in response to the sensed or monitored parameter.
Abstract:
Aspects according to the present invention provide a method and implant suitable for implantation inside a human body that includes a power consuming means responsive to a physiological requirement of the human body, a power source and a power storage device. The power source comprises a piezoelectric assembly that is configured to generate an electrical current when flexed by the tissue of the body and communicate the generated current to the power storage device, which is electrically coupled to the power source and to the power consuming means.
Abstract:
This invention relates to prosthetic cardiac and venous valves and a single catheter device and minimally invasive techniques for percutaneous and transluminal valvuloplasty and prosthetic valve implantation.
Abstract:
A metal balloon catheter having a main tubular body, a metal balloon proximate a distal end of the main tubular body, a central annulus extending along an entire longitudinal aspect of the catheter for accommodating a guidewire therethrough and an inflation annulus adjacent the central annulus which extends along the longitudinal axis of the main tubular body and terminates in fluid flow communication with an inflation chamber of the metal balloon. The metal balloon catheter may be either unitary integral metal catheter in which the main tubular body and the balloon are fabricated of metal, or it may consist of a polymeric main tubular body and a metal balloon.
Abstract:
Guidewires and thin-film catheter-sheaths, fabricated using vacuum deposition techniques, which are monolayer or plural-layer members having ultra-thin wall thicknesses to provide very-low profile delivery assemblies for introduction and delivery of endoluminal devices.