Abstract:
An endoprosthesis includes an expandable tubular body defined by a plurality of struts. In some embodiments, the expandable tubular body includes a bioerodible metal that has at least a first surface region and a second surface region. The first and second surface regions can have different surface oxide compositions. In some embodiments, the first portion has a thermally altered microstructure and the second portion has a wrought microstructure. The thermally altered microstructure can be a cast microstructure comprising dendritic grains. The first portion forms at least a portion of an outer surface of the expandable tubular body. In some embodiments, the expandable tubular body includes iron or a bioerodible iron alloy and at least one surface of the expandable tubular body includes a substantially uniform coating of iron(III) oxide.
Abstract:
Medical devices are described that include a device body that carries a first bioerodible member and a second bioerodible member. One of the first or second members includes a bioerodible metallic material or ceramic, and the other includes a bioerodible polymeric material. The first and/or second member can include a therapeutic agent such as paclitaxel.
Abstract:
The use of a continuous process for making a directly cast strip to provide a thickness satisfactory for industrial cells and batteries for stationary and motive power applications is disclosed, the thickness of the strip being at least 0.060 inch, and the process providing a visually crack-free surface in the transverse direction of the directly cast strip, the strip being lead or a lead-based alloy, such as, for example, calcium-tin-silver.
Abstract:
Disclosed are curable sealant compositions for coating a conductive bushing for a lead-acid cell or battery having positive and negative plates disposed within a container and a cover, the conductive bushing being molded into the cover and providing electrical communication with at least one of the plates, the bushing presenting an interface with the exterior of the bushing and the cover. The sealant compositions comprise a sealing elastomer in an amount from about 1% to about 15% by weight and a solvent in an amount of up to about 99% by weight. In accordance with the invention, the sealant composition is a terpene solvent, preferably a cyclic terpene and more preferably D-limonene. The sealant compositions preferably further comprise a reinforcing agent in an amount of about 1% to about 15% by weight. In use, at least a portion of a bushing is coated with the sealant composition, and the sealant composition is cured. The bushing is insert-molded within a nonconductive plastic substrate to form a cover for a battery or cell, such that the sealing elastomer seals the interface between the bushing and the substrate.
Abstract:
Automotive SLI lead-acid batteries are disclosed which are characterized by enhanced resistance to intercell connection corrosion, even when exposed to the relatively high under-the-hood service temperatures in use with recent model automobiles. The straps are formed from a lead-based alloy including from about 2.0 to 2.6% or so antimony, from about 0.04 to 0.07% tin, from about 0.04 to about 0.07% arsenic, and from about 0.012 to about 0.030% selenium, the percentages being based upon the weight of the alloy.
Abstract:
A bioerodible endoprosthesis erodes to a desirable geometry that can provide, e.g., improved mechanical properties or degradation characteristics.
Abstract:
A sealed lead-acid cell and positive plate for a sealed lead-acid cell are provided. The positive plate comprises a grid supporting structure having a layer of active material pasted thereto, the grid supporting structure comprising a lead-based alloy consisting essentially of lead, from about 0.02% to about 0.05% calcium, from about 1.5% to about 3.0% tin, and from about 0.01% to about 0.05% silver. A positive plate in accordance with the invention has excellent mechanical properties, and is satisfactory for use in a lead-acid cell.
Abstract:
Automotive SLI lead-acid batteries are disclosed which are characterized by enhanced resistance to intercell connection corrosion, even when exposed to the current, relatively high under-the-hood service temperatures in use with recent model automobiles. The straps are formed from a lead-based alloy including from about 3.0 to 3.3% antimony, from about 0.04 to 0.07% tin, from about 0.04 to 0.07% arsenic and from about 0.014 to 0.020% selenium, the percentages being based upon the weight of the alloy.
Abstract:
An endoprosthesis includes an expandable tubular body defined by a plurality of struts. In some embodiments, the expandable tubular body includes a bioerodible metal that has at least a first surface region and a second surface region. The first and second surface regions can have different surface oxide compositions. In some embodiments, the first portion has a thermally altered microstructure and the second portion has a wrought microstructure. The thermally altered microstructure can be a cast microstructure comprising dendritic grains. The first portion forms at least a portion of an outer surface of the expandable tubular body. In some embodiments, the expandable tubular body includes iron or a bioerodible iron alloy and at least one surface of the expandable tubular body includes a substantially uniform coating of iron(III) oxide.
Abstract:
A bioerodible endoprosthesis erodes to a desirable geometry that can provide, e.g., improved mechanical properties or degradation characteristics.