摘要:
An endoprosthesis includes an expandable tubular body defined by a plurality of struts. In some embodiments, the expandable tubular body includes a bioerodible metal that has at least a first surface region and a second surface region. The first and second surface regions can have different surface oxide compositions. In some embodiments, the first portion has a thermally altered microstructure and the second portion has a wrought microstructure. The thermally altered microstructure can be a cast microstructure comprising dendritic grains. The first portion forms at least a portion of an outer surface of the expandable tubular body. In some embodiments, the expandable tubular body includes iron or a bioerodible iron alloy and at least one surface of the expandable tubular body includes a substantially uniform coating of iron(III) oxide.
摘要:
An endoprosthesis includes an expandable tubular body defined by a plurality of struts. In some embodiments, the expandable tubular body includes a bioerodible metal that has at least a first surface region and a second surface region. The first and second surface regions can have different surface oxide compositions. In some embodiments, the first portion has a thermally altered microstructure and the second portion has a wrought microstructure. The thermally altered microstructure can be a cast microstructure comprising dendritic grains. The first portion forms at least a portion of an outer surface of the expandable tubular body. In some embodiments, the expandable tubular body includes iron or a bioerodible iron alloy and at least one surface of the expandable tubular body includes a substantially uniform coating of iron(III) oxide.
摘要:
A medical implant includes a bioerodible portion adapted to degrade under physiological conditions. The bioerodible portion includes a bioerodible metal matrix and a salt or clay within the bioerodible metal matrix.
摘要:
Techniques are disclosed that allow a stent to be folded within a balloon of a stent delivery system. In one example, a stent has first and second columns that extend from a proximal end to a distal end along a longitudinal axis. Each of the first columns extend substantially parallel to the longitudinal axis and comprise a plurality of elements that each have a substantially polygonal shape. Each of the second columns extend substantially parallel to the longitudinal axis and are between adjacent first columns. Each of the respective second columns include a plurality of first connectors that have a curvilinear shape and that extend in a substantially circumferential direction to connect adjacent first columns. The stent also has a plurality of second connectors, wherein at least one of the second connectors extends between a first element and a second element.
摘要:
Medical devices having a barrier layer comprising an inorganic material. The medical device has a reservoir containing a therapeutic agent and the barrier layer is disposed over the reservoir. In one aspect, the barrier layer has one permeability to the therapeutic agent at one portion of the medical device and a different permeability at another portion of the medical device. In another aspect, the dosage amount of the therapeutic agent in the reservoir at one portion of the medical device is different from the dosage amount of the therapeutic agent in the reservoir at another portion of the medical device. In another aspect, a bioresorbable layer is disposed over the barrier layer at one or more portions of the medical device, wherein the bioresorbable layer comprises a bioresorbable material. Also, methods of coating a medical device are disclosed, in which a barrier layer over a medical device is formed using a lithographic etching process where a plurality of particles serve as an etch mask.
摘要:
An implantable medical device for releasing therapeutic agent having a medical device body and a plurality of reservoir-defining structures disposed on a surface of the body. A reservoir can be defined by the reservoir-defining structures and therapeutic agent may be located in the reservoir. A cover may extend over the reservoir so that the therapeutic agent is released from the reservoir when the medical device implanted. Methods for making the medical device may also include providing a medical device body, positioning a plurality of reservoir-defining structures on a surface of the body to form a reservoir, loading therapeutic agent into the reservoir, and covering the reservoir so that the therapeutic agent may release when the medical device is implanted. Alternatively, the reservoir may be covered with a cover and an opening formed in the cover so that the therapeutic agent may release when the medical device is implanted.
摘要:
Among other things, a bio-erodible implantable endoprosthesis comprises a member that includes (a) a core having a surface, and (b) a bio-erodible metal on a least a portion of the surface of the core, wherein the bio-erodible metal erodes more slowly than the core and includes openings through which physiological fluids can access the core upon implantation.
摘要:
An expandable medical device having a particle layer disposed over a reservoir containing a therapeutic agent. The particle layer has a first porosity when the medical device is in the unexpanded configuration and a second porosity when the medical device is in the expanded configuration. The particle layer comprises a plurality of micron-sized or nano-sized particles. In certain embodiments, the particles are not connected to each other, and as such, the different porosities are provided by changes in the spacing between the particles as the medical device is expanded/unexpanded. Also disclosed are medical devices having a particle layer, wherein the particle layer comprises a plurality of encapsulated particles, and methods of coating medical devices with particles.
摘要:
Among other things, a bio-erodible implantable endoprosthesis comprises a member that includes (a) a core having a surface, and (b) a bio-erodible metal on a least a portion of the surface of the core, wherein the bio-erodible metal erodes more slowly than the core and includes openings through which physiological fluids can access the core upon implantation.
摘要:
A bioerodible endoprosthesis includes a bioerodible magnesium alloy. The bioerodible magnesium alloy includes magnesium, between 7 and 8 weight percent aluminum, between 0.4 and 0.8 weight percent zinc, and between 0.05 and 0.8 weight percent manganese.