Abstract:
A belt drive apparatus, including, an endless belt to be laid across in a tensioned condition between supporting rollers and to travel being in pressure contact with or being separated from a body to receive the pressure contact, a pressure contact/separating state detection section to detect whether the endless belt is in the pressure contact with the body or separated therefrom, a belt position detection section to detect a position of the endless belt in a width direction thereof, a belt abnormality judging section to judge whether the endless belt is in an abnormal position based on a detection result obtained by the belt position detection section and one of judgment values which are set correspondingly to the pressure contact/separating state of the endless belt, and a belt drive control section to control a drive of the endless belt.
Abstract:
A color image forming apparatus for forming toner images by carrying out charging, exposure, and development on at least one photoreceptor drum, and forming color images by transferring the toner images onto sheets, the color image forming apparatus including: a photoreceptor drum which rotates around an axis; an exposure section which intermittently emits a light beam onto the cylindrical surface of the rotating photoreceptor drum along scanning lines parallel to the axis of the photoreceptor drum; a calculation section which calculates a printing ratio of a color image to be formed on one sheet, wherein the printing ratio is the ratio of the area covered by toner in the color image; and a timing control section which controls a timing when the exposure section emits the light beam in a direction of rotation of the photoreceptor drum based on the printing ratio calculated by the calculation section.
Abstract:
An image formation control section sets a secondary transfer section in the pressed state in the case of execution of a main scanning correction processing as color registration correction, and sets the secondary transfer section in the separated state in the case of execution of a sub-scanning correction processing, an entire lateral magnification correction processing, a partial lateral magnification correction processing, or a skew correction processing, which is the correction of the image position for components other than the main scanning direction as color registration correction so as to prevent the situation where the correction accuracy of the image position with respect to the main scanning direction decreases and to prevent a decrease in print quality due to a residual image of a registration correction processing.
Abstract:
A color image forming apparatus including: an image forming section which forms an image based on image information on an image carrier provided in the image forming section; a detection section which detects a print mark for color misalignment correction formed on the image carrier by the image forming section, and outputs print mark detection information; and a control section for executing color misalignment correction control based on the print mark detection information outputted from the detection section, wherein, the control section obtains a trend of a color misalignment amount of the print mark by statistically processing data of the result of the print mark detection, calculates an execution timing of color misalignment correction base on the obtained trend, and executes the color misalignment correction at the calculated execution timing.
Abstract:
An image forming apparatus having a process correction mode wherein when a temperature of a fixing device in an image formation system in a power-on state is equal to or less than a predetermined value, the image forming apparatus increases the fixing temperature to the predetermined value. The apparatus sets the process correction mode based on power-on information output from a first detector which detects presence of the power-on state for the fixing device and fixing temperature information output from a second detector which detects a fixing temperature in the fixing device, and sets a priority level for performing a correction processing of the color misregistration to be lower than a correction processing comprising an image density adjustment.
Abstract:
A signal processing apparatus comprising: an optical sensor for outputting a detection signal by detecting a surface of a recording medium on which a correction image is to be formed; and a control section configured to obtain a detection signal of the surface of the recording medium with the correction image from which a dominant frequency component has been deleted by making reverse frequency analysis of an analysis signal that has been obtained by making a frequency analysis of a detection signal outputted by the optical sensor detecting the surface of the recording medium on which the correction image it formed.
Abstract:
An image forming apparatus including photoconductor drums corresponding to colors, motors, gears to transmit each rotation of the motors to each of the photoconductor drums, each of two gears comprising a portion to be detected intermittently continuing in a circumferential direction at a position having same radius centering around a rotary shaft of the gears, a pair of phase sensors to output detection signals of signal logics according to an existence or a non-existence of the portion to be detected at a point symmetric position centering around the rotary shaft of each of two gears and a control unit to calculate a rotation phase difference between each of the gears based on a logical combination of the detection signals which are output from the pair of phase sensors and to control the motors so as to synchronize rotation of each of the gears based on the calculated rotation phase difference.
Abstract:
There is described an image forming apparatus, in which the influence of the overall controlling section startup time is reduced, thereby cutting down the time from turning on of power to enabling of image formation. The image forming apparatus includes: a main power switch to turn ON/OFF an AC power source to be supplied into the image forming apparatus; a DC power current generating section to convert AC power current, fed from the AC power source, to DC power current; an overall-controlling section to control overall operations of the image forming apparatus; an engine-controlling section to conduct a predetermined controlling operation among from controlling operations to be conducted in the image forming apparatus; a first power-controlling section, included in the overall-controlling section and/or controlled by the overall-controlling section; and a second power-controlling section, having a starting time shorter than that of the first power-controlling section.
Abstract:
A signal processing device for analog-to-digital converting a burst signal has a feature of selecting a data bus to notify a disk control device of a conversion result via an NRZ data bus. The disk control device stores the result of the analog-to-digital conversion of the servo positional signal. The positional signal of a head of the disk device is digitalized in a R/W channel. Sampling for digital conversion is performed in only a window which is defined only in the vicinity of peaks of the positional signal. The values of peaks which are obtained by sampling are averaged by an averaging circuit. This enables the influence of noise occurred outside of the window to be eliminated. Although the noise in the window is sampled, its adverse influence is suppressed by the averaging processing.
Abstract:
A signal processing delay circuit is fabricated as a semiconductor integration circuit to cope with increase in the data transfer speed and data recording and reproducing density on a recording medium. In the delay circuit, the amount of delay of a reference delay circuit of a delay PLL is controlled to take a fixed value independent of deviation in quality of the semiconductor circuit, change in power, and alteration in temperature. A control signal supervising the delay amount of the reference delay circuit is employed to control amounts of delay of input signals supplied to a window adjustment delay circuit of a window adjustment circuit and a T/2 generation delay circuit generating a synchronizing signal. Each of these delay circuits includes an analog variable delay circuit having the same configuration. The window adjustment delay circuit is supervised by a signal obtained by weighting the control signal by a D/A converter. A data acquisition circuit and a data write circuit each include an analog variable delay circuit.