摘要:
The present invention involves connectors for reducing Far-End Crosstalk (FEXT) through the use of novel polarity swapping to negate the cumulative effect of FEXT. Skew adjustment is used to improve the FEXT cancellation from polarity swapping. The polarity reversal location or locations among FEXT sources are optimized to achieve maximum FEXT cancellation. The novelty polarity swapping technique can be applied to a wide variety of connectors, such as mezzanine connectors, backplane connectors, and any other connectors that can benefit from FEXT reduction.
摘要:
In a transmission circuit board, ground terminal portions (10) are disposed at every other two rows in both end columns. Each of signal circuit layers (20) includes at least a pair of adjacent signal connecting portions electrically connected to a pair of the wiring portions (21, 22) arranged in parallel in a row direction and the column direction different from those on an adjacent signal circuit layer. Each of the ground layers is electrically connected to at least one of the ground terminal portions (10) in the both end columns.
摘要:
An electrical connector (10) has ground planes (13). Each ground plane (13) crosses counter ground planes (36) of the counter connector (30) so as to make a lattice structure when the counter connector (30) is fitted to the connector (10). The contact section (12C) of a signal terminal (12) of the connector (10) has a plane surface perpendicular to the surface of the corresponding counter contact section (34A) of the counter signal terminal (34), and formed at a flexible elastic arm (12B) in the plane surface. The ground plane (13) has pressure-welding sections (18B) and (20B), which individually elastically contact with the facing inner surfaces of each slit, at a portion to be put into each slit of the counter ground plane (36).
摘要:
A transmission board (10) comprises a frame body (30) and a surface board (20) supported by the frame body (30) and having a transmission circuit. The frame body (30) has plugging edges (33, 34) that project from the edges of the surface board (20) for guiding the terminals of mating connectors to connection pads on the surface board (20). The plugging edges have guiding slopes 33A and 33B, and 34A and 34B. At least the plugging edges of the frame body (30) are made of a metal or resin molding.
摘要:
An intermediate board electrical connector comprises a circuit board having two non-parallel straight edges, a plurality of connections sections (12 and 13) arranged along the straight edges at regular intervals, and a plurality of wiring conductors (14) connecting the corresponding connection sections (12 and 13). The connection sections (12 and 13) are connected to connectors (20 and 30), respectively.
摘要:
An electrical connector for connecting a daughter board to a mother board, includes an insulating housing; contact terminals disposed in the insulating housing; an open mouth provided in the insulating housing for receiving the daughter board; terminal receiving slots provided in the open mouth; each of the contact terminals being made by stamping and forming a spring conductive sheet so as to have a fixing section to be fitted in the terminal receiving slot, a reverse U-shaped section extending upwardly from the fixing section and then downwardly into the open mouth to provide a lower contact point, a J-shaped section extending upwardly from the lower contact point and toward the rear wall and then upward to provide a stopper section, and a C-shaped section extending upwardly from the J-shaped section and into the open mouth to provide an upper contact point; the reverse U-shaped section, the J-shaped section, and the C-shaped section constituting a spring unit; shoulders provided on the rear wall of the open mouth for engagement with the stopper section to hold the contact terminal in the terminal receiving slot with the spring unit under a preload condition so that when the daughter board is turned to the latch position to flex the spring section, the upper contact points are brought into contact with the pads on the edge portion with a predetermined contact force.
摘要:
A contact element (4) comprises a fixed section (5) inserted into the slot (2) along the first minor side of the slot, a flexible section (6) extending from the fixed section toward the second minor side of the slot in a plane and being flexible in the plane, and contact portions (7A, 7B) extending from the flexible section so as to project from the major faces of a housing (1). The fixed section, the flexible section, and the contact portions are in the plane parallel to the major faces of the slot. A conductive layer or sheet (3) is provided on the major sides of the slot. A sliding contact (8A, 8B) are provided near the contact portions are brought into sliding contact with the conductive layer or sheet.
摘要:
The present invention involves chip-to-chip communication systems for reducing Far-End Crosstalk (FEXT) through the use of novel polarity swapping to negate the cumulative effect of FEXT. Skew adjustment is used to improve the FEXT cancellation from polarity swapping. The polarity reversal location or locations among FEXT sources are optimized to achieve maximum FEXT cancellation. The novelty polarity swapping technique can be applied to a wide variety of systems that can benefit from FEXT reduction.
摘要:
A transmission board (10) comprises a frame body (30) and a surface board (20) supported by the frame body (30) and having a transmission circuit. The frame body (30) has plugging edges (33, 34) that project from the edges of the surface board (20) for guiding the terminals of mating connectors to connection pads on the surface board (20). The plugging edges have guiding slopes 33A and 33B, and 34A and 34B. At least the plugging edges of the frame body (30) are made of a metal or resin molding.
摘要:
A method of making an electrical connector having a housing (2) and a plurality of contact elements with connection sections (4) projecting from the housing, which comprises filling a regular recess (12) provided in the upper face (11) of a mold member (10) with a solder material (14A), putting the front ends of the connection sections into the solder material, solidifying the solder material, and removing the connection sections from the mold member.