Abstract:
This specification discloses a device of controlling temperature gain and the method thereof. The invention detects the temperature of work environment and uses it to generate a control signal and a PWM signal for dynamically controlling the heaters around electronic elements to heat up. When the temperature of work environment is too low, the invention can increase the stability of the electronic elements.
Abstract:
Methods and apparatus for performing end point determination. A method includes receiving a wafer into an etch tool chamber for performing an RIE etch; beginning the RIE etch to form vias in the wafer; receiving in-situ measurements of one or more physical parameters of the etch tool chamber that are correlated to the RIE etch process; providing a virtual metrology model for the RIE etch in the chamber; inputting the received in-situ measurements to the virtual metrology model for the RIE etch in the chamber; executing the virtual metrology model to estimate the current via depth; comparing the estimated current via depth to a target depth; and when the comparing indicates the current via depth is within a predetermined threshold of the target depth; outputting a stop signal. An apparatus for use with the method embodiment is disclosed.
Abstract:
This specification discloses a device of controlling temperature gain and the method thereof. The invention detects the temperature of work environment and uses it to generate a control signal and a PWM signal for dynamically controlling the heaters around electronic elements to heat up. When the temperature of work environment is too low, the invention can increase the stability of the electronic elements.
Abstract:
A heat-dissipating structure for the expansion board architecture is provided. A fixing element disposed on the heat-absorbing substrate fixes the motherboard and the first expansion board. The heat-generating elements on the motherboard or the first expansion board are directly in touch with the heat-absorbing surface of the heat-absorbing substrate to absorb their heat. The heat-dissipating board extended from the side of the heat-absorbing substrate then dissipates the heat absorbed by the heat-absorbing substrate. The structure thus solves the problems that existing heat-dissipating structures occupy larger space and therefore cannot be effectively used in an expansion board architecture to dissipate heat produced by the heat-generating elements between the motherboard and the expansion board and that it is likely to have assembly tolerance. Using the structure can reduce the space and the assembly tolerance, but effectively enhance heat dissipation in the expansion board architecture.
Abstract:
A heating and heat dissipating multi-layer circuit board structure for keeping operating temperatures of electronic components is provided. The outer layer of the multi-layer printed circuit board is in contact with electronic components. The operating temperatures of electronic components are measured through by a temperature measuring circuit. When the operating temperature of at least one electronic component is lower than a default temperature, the heating circuits corresponding to the electronic components are enabled respectively to heat the electronic components through corresponding heat conduction elements. When the operating temperature of at least one electronic component is higher than another default temperature, the heating circuits corresponding to the electronic components are disabled to transfer the heat from the electronic components to the heat conduction elements automatically. Therefore, the structure achieves the goal of keeping the operating temperature of each electronic component in the corresponding environment.
Abstract:
Methods and apparatus for performing end point determination are disclosed. An embodiment includes an apparatus comprising a process tool and a programmable processor. The process tool has an output for signaling in-situ measurements of physical parameters during processing of a wafer in the process tool, and the process tool has an input for receiving a signal indicating a modification of a recipe for the processing. The programmable processor is for executing a virtual metrology model of the process tool to estimate an estimated characteristic of the wafer achieved during the processing. The estimated characteristic is based on the in-situ measurements and the virtual metrology model. The programmable processor has an output for transmitting the signal when the estimated characteristic exceeds a predetermined threshold based on a target characteristic.
Abstract:
A heat-dissipating structure for the expansion board architecture is provided. A fixing element disposed on the heat-absorbing substrate fixes the motherboard and the first expansion board. The heat-generating elements on the motherboard or the first expansion board are directly in touch with the heat-absorbing surface of the heat-absorbing substrate to absorb their heat. The heat-dissipating board extended from the side of the heat-absorbing substrate then dissipates the heat absorbed by the heat-absorbing substrate. The structure thus solves the problems that existing heat-dissipating structures occupy larger space and therefore cannot be effectively used in an expansion board architecture to dissipate heat produced by the heat-generating elements between the motherboard and the expansion board and that it is likely to have assembly tolerance. Using the structure can reduce the space and the assembly tolerance, but effectively enhance heat dissipation in the expansion board architecture.
Abstract:
A system and method for monitoring a manufacturing process are provided. A wafer is provided. Process parameters of a manufacturing machine are in-situ measured and recorded if the wafer is processed in the manufacturing machine. A wafer measured value of the wafer is measured after the wafer has been processed. The process parameters are transformed into a process summary value. A two dimensional orthogonal chart with a first axis representing the wafer measured value and a second axis representing the process summary value is provided. The two dimensional orthogonal chart includes a close-loop control limit. A visualized point representing the wafer measured value and the process summary value is displayed on the two dimensional orthogonal chart.
Abstract:
Methods and apparatus for performing end point determination. A method includes receiving a wafer into an etch tool chamber for performing an RIE etch; beginning the RIE etch to form vias in the wafer; receiving in-situ measurements of one or more physical parameters of the etch tool chamber that are correlated to the RIE etch process; providing a virtual metrology model for the RIE etch in the chamber; inputting the received in-situ measurements to the virtual metrology model for the RIE etch in the chamber; executing the virtual metrology model to estimate the current via depth; comparing the estimated current via depth to a target depth; and when the comparing indicates the current via depth is within a predetermined threshold of the target depth; outputting a stop signal. An apparatus for use with the method embodiment is disclosed.
Abstract:
A method of fuzzy control for adjusting a semiconductor machine comprising: providing measurement values from first the “parameter of a pre-semiconductor manufacturing process”, second the “parameter of the semiconductor manufacturing process”, and third the “operation parameter of the semiconductor manufacturing process”; performing a fuzzy control to define two inputs and one output corresponding to the measurement values, wherein the difference between the first and third values, and the difference between the second and third values, forms the two inputs, then from the two inputs one target output is calculated by fuzzy inference; finally, determining if the target output is in or out of an acceptable range. Whereby the target output is the “machine control parameter of the semiconductor manufacturing process” and when within an acceptable range is used for adjusting the semiconductor machine.