Abstract:
An internal combustion engine system includes a cylinder block with a plurality of cylinders, a gas intake manifold for providing at least air to the cylinder block and an exhaust gas manifold for exiting the exhaust gas from the cylinder block, wherein the exhaust gas manifold includes at least a main exhaust gas outlet and a waste gate exhaust gas outlet, wherein the main exhaust gas outlet is connected to a main exhaust gas pipe for guiding the exhaust gas to a main exhaust gas after treatment system and the waste gate exhaust gas outlet is connected to a waste gate exhaust gas pipe, and wherein the waste gate exhaust gas pipe is reconnected to the main exhaust gas pipe upstream of the main exhaust gas after treatment system and includes at least one waste gate exhaust gas after treatment unit, such as an oxidation catalyst such as a diesel oxidation catalyst, for catalytically treating the exhaust gas streaming through the waste gate exhaust gas pipe, and to a method for increasing the temperature in an internal combustion engine system.
Abstract:
The invention relates to an electric propulsion system (100) for a vehicle (1), said system comprising a first electrical machine (12) and a second electrical machine (14) for providing propulsion to said vehicle, characterized in that said system further comprises an electrically isolated coupling assembly (20) configured to provide electrical isolation between said first and said second electrical machines; a first bidirectional DC/AC converter (68) disposed in a first electrical connection (82) extending from the first electrical machine; a second bidirectional DC/AC converter (69) disposed in a second electrical connection (84) extending from the second electrical machine; a switch assembly (30) connected via at least one of the bidirectional DC/AC converters to at least one of the first and second electrical machines and further connected to an onboard energy storage system (40); and wherein said switch assembly is configured to connect at least one of the first electrical machine and the second electrical machine to either the onboard energy storage system (40) or to an externally supplied power source (50, 90), thereby said switch assembly being configured to set the electric propulsion system in a number of operational modes.
Abstract:
The invention relates to an electric propulsion system (100) for a vehicle (1), said system comprising a first electrical machine (12) and a second electrical machine (14) for providing propulsion to said vehicle, characterized in that said system further comprises an electrically isolated coupling assembly (20) configured to provide electrical isolation between said first and said second electrical machines; a first bidirectional DC/AC converter (68) disposed in a first electrical connection (82) extending from the first electrical machine; a second bidirectional DC/AC converter (69) disposed in a second electrical connection (84) extending from the second electrical machine; a switch assembly (30) connected via at least one of the bidirectional DC/AC converters to at least one of the first and second electrical machines and further connected to an onboard energy storage system (40); and wherein said switch assembly is configured to connect at least one of the first electrical machine and the second electrical machine to either the onboard energy storage system (40) or to an externally supplied power source (50, 90), thereby said switch assembly being configured to set the electric propulsion system in a number of operational modes.
Abstract:
A fuel-pumping system for a fuel includes at least one reservoir providing a first volume for the fuel and a second volume fur a compression fluid, a separator membrane between the first volume and the second volume, an inlet port of the at least one reservoir for feeding the fuel to the first volume, an outlet port of the at least one reservoir for discharging the fuel at a high pressure from the first volume, a fluid port of the at least one reservoir for supplying or removing the compression fluid to or from the second volume. An operating method and a fuel-injection system are also disclosed.
Abstract:
An electric machine including a first member and a second member. The second member is movable in relation to the first member. The first member has at least one coil and the first and the second members both include a plurality of segments, where each segment of the first member comprises a plurality of sections have a first magnetic conducting material. Each segment of the second member includes a plurality of sections having a second magnetic conducting material, and in which the first and the second member includes a closed magnetic circuit.
Abstract:
An internal combustion engine system includes a cylinder block with a plurality of cylinders, a gas intake manifold for providing at least air to the cylinder block and an exhaust gas manifold for exiting the exhaust gas from the cylinder block, wherein the exhaust gas manifold includes at least a main exhaust gas outlet and a waste gate exhaust gas outlet, wherein the main exhaust gas outlet is connected to a main exhaust gas pipe for guiding the exhaust gas to a main exhaust gas after treatment system and the waste gate exhaust gas outlet is connected to a waste gate exhaust gas pipe, and wherein the waste gate exhaust gas pipe is reconnected to the main exhaust gas pipe upstream of the main exhaust gas after treatment system and includes at least one waste gate exhaust gas after treatment unit, such as an oxidation catalyst such as a diesel oxidation catalyst, for catalytically treating the exhaust gas streaming through the waste gate exhaust gas pipe, and to a method for increasing the temperature in an internal combustion engine system.
Abstract:
A fuel-pumping system for a fuel includes at least one reservoir providing a first volume for the fuel and a second volume for a compression fluid, a separator membrane between the first volume and the second volume, an inlet port of the at least one reservoir for feeding the fuel to the first volume, an outlet port of the at least one reservoir for discharging the fuel at a high pressure from the first volume, a fluid port of the at least one reservoir for supplying or removing the compression fluid to or from the second volume. An operating method and a fuel-injection system are also disclosed.
Abstract:
System and method for providing a communication link between a central station (11) and a remote mobile or stationary object (13) including transmitting and receiving communication means (13) having transmitting and receiving communication means (14, 15) for speech and data transmission. The communication link includes a speech transmission link between the central station (11) and the remote object (13). The communication link also includes a data transmission link between the remote object and the central station that is rerouted via a centralized communication and database server (10) for handling operator and/or object related information. The method includes establishing a speech connection between the central station (11) and the remote object (13), and simultaneously establishing data connections between the remote object (13) and the communication and database server (10) as well as between the central station and the communication and database server.
Abstract:
A method and software are provided for estimating a travel time for a vehicle including the steps of determining a route for which the travel time is to be estimated, dividing the route into route sections, wherein each route section has substantially constant road characteristics, selecting a vehicle configuration for the vehicle, retrieving, from a database, an estimated travel time for each route section based on each route section for the selected vehicle configuration, aggregating the estimated travel times for each route section from the database into a total travel time for the determined route. Furthermore a method for creating, and using, the database is provided.
Abstract:
System and method for monitoring the physiological behavior of a driver that includes measuring a physiological variable of a driver, assessing a driver's behavioral parameter on the basis of at least said measured physiological variable, and informing the driver of the assessed driver's behavioral parameter. The measurement of the physiological variable can include measuring a driver's eye movement, measuring a driver's eye-gaze direction, measuring a driver's eye-closure amount, measuring a driver's blinking movement, measuring a driver's head movement, measuring a driver's head position, measuring a driver's head orientation, measuring driver's movable facial features, and measuring a driver's facial temperature image.