Abstract:
A method of improving lithography resolution on a semiconductor, including the steps of providing a substrate on which a protecting layer, a first etching layer and a photoresist layer are sequentially formed; patterning the photoresist layer to form an opening so as to partially reveal the first etching layer; implanting a first ion into the revealed first etching layer to form a first doped area; and implanting a second ion into the revealed first etching layer to form a second doped area, wherein the first doped area is independent from the second doped area is provided.
Abstract:
A method of forming a patterned photoresist layer. First, an anti-reflection coating layer is formed on a substrate. Next, a first bake is performed. A photoresist layer is then formed on the anti-reflection coating layer. Exposure is performed. A second bake is performed, wherein the temperature difference between the first bake and the second bake is about 35 ° C.˜55 ° C. Finally, development is performed. The patterned photoresist layer features have perfect profiles in accordance with this invention.
Abstract:
Disclosed is a test mask structure. The test mask structure of the present invention comprises at least an array pattern region, in a certain proportion to the final product, having a first pattern density according to the certain proportion; and at least one test mask pattern region having a second pattern density. In the test mask structure of the present invention, the required pattern density is obtained by adjusting the area of the array pattern region and the area of the test mask pattern region according to the first pattern density and the second pattern density.
Abstract:
An auxiliary lock includes an exterior lock assembly having a knob and an actuating plate that is connected to the knob to rotate therewith. A casing is mounted inside a door for rotatably supporting a knob that is also connected to the actuating plate to rotate therewith. A control plate is mounted in the casing and includes a first end extended beyond the casing for manual operation. A second end of the control plate includes a notch releasably engaged with one of a number of teeth of an engaging wheel mounted in the casing. The control plate is movable vertically and retained in place by a positioning element. The engaging wheel is connected to the actuating plate to rotate therewith.
Abstract:
An active device array substrate and a fabricating method thereof are provided. A first patterned conductive layer including separated scan line patterns is formed on a substrate. Each scan line pattern includes a first and second scan lines adjacent to each other. Both the first and the second scan lines have first and second contacts. An open inspection on the scan line patterns is performed. Channel layers are formed on the substrate. A second patterned conductive layer including data lines interlaced with the first and second scan lines, sources and drains located above the channel layers, and connectors is formed on the substrate. The sources electrically connect the data lines correspondingly. At least one of the connectors electrically connects the first and second scan lines, so as to form a loop in each scan line pattern. Pixel electrodes electrically connected to the drains are formed.
Abstract:
An active device array substrate and a fabricating method thereof are provided. A first patterned conductive layer including separated scan line patterns is formed on a substrate. Each scan line pattern includes a first and second scan lines adjacent to each other. Both the first and the second scan lines have first and second contacts. An open inspection on the scan line patterns is performed. Channel layers are formed on the substrate. A second patterned conductive layer including data lines interlaced with the first and second scan lines, sources and drains located above the channel layers, and connectors is formed on the substrate. The sources electrically connect the data lines correspondingly. At least one of the connectors electrically connects the first and second scan lines, so as to form a loop in each scan line pattern. Pixel electrodes electrically connected to the drains are formed.
Abstract:
A metal interconnect structure includes a plurality of first plugs adjacent to each other, a first metal line extending in a first direction and contacting each first plug to form a first section with a tapered second section in between, and a second plug adjacent to the second section, both in a second direction normal to the first direction.
Abstract:
An overlay mark formed on a photomask, comprising a first rectangular region, a second rectangular region, a third rectangular region, and a fourth rectangular region, each rectangular region having the same pattern configuration, a longer side of the first rectangular region and a longer side of the third rectangular region being parallel to each other, and a longer side of the second rectangular region and a longer side of the fourth rectangular region being parallel to each other, the longer side of the first rectangular region being perpendicular to the longer side of the second rectangular region; wherein each pattern configuration has at least two different pattern elements allowing other pattern elements be chosen to align when any one of the pattern elements on the substrate was damaged during process.
Abstract:
Disclosed is a test mask structure. The test mask structure of the present invention comprises at least an array pattern region, in a certain proportion to the final product, having a first pattern density according to the certain proportion; and at least one test mask pattern region having a second pattern density. In the test mask structure of the present invention, the required pattern density is obtained by adjusting the area of the array pattern region and the area of the test mask pattern region according to the first pattern density and the second pattern density.