Abstract:
Disclosed herein are viral vectors suitable for transfection into woody trees for purposes of delivering and expressing beneficial genes. Specifically exemplified herein are vectors for transfecting citrus trees. The vectors allow for the expression of useful proteins, such as those that can protect the tree from disease. Specifically exemplified herein are methods of transfecting woody trees that allow multiple applications of vectors while avoiding superinfection exclusion.
Abstract:
The present invention relates to a recombinant viral nucleic acid selected from a (+) sense, single stranded RNA virus possessing a native subgenomic promoter encoding for a first viral subgenomic promoter, a nucleic acid sequence that codes for a viral coat protein whose transcription is regulated by the first viral subgenomic promoter, a second viral subgenomic promoter and a second nucleic acid sequence whose transcription is regulated by the second viral subgenomic promoter. The first and second viral subgenomic promoters of the recombinant viral nucleic acid do not have homologous sequences relative to each other. The recombinant viral nucleic acid provides the particular advantage that it systemically transcribes the second nucleic acid in the host. Host organisms encompassed by the present invention include procaryotes and eucaryotes, particularly animals and plants. The present invention also relates to viruses containing the viral vectors which are infective, production cells which are capable of producing the viruses or parts thereof, a host infected by the viruses of the invention, the gene products produced by expression of the viral nucleic acids and a process for the production of a desired product by growing the infected hosts.
Abstract:
The present invention relates to a recombinant viral nucleic acid selected from a (+) sense, single stranded RNA virus possessing a native subgenomic promoter encoding for a first viral subgenomic promoter, a nucleic acid sequence that codes for a viral coat protein whose transcription is regulated by the first viral subgenomic promoter, a second viral subgenomic promoter and a second nucleic acid sequence whose transcription is regulated by the second viral subgenomic promoter. The first and second viral subgenomic promoters of the recombinant viral nucleic acid do not have homologous sequences relative to each other. The recombinant viral nucleic acid provides the particular advantage that it systemically transcribes the second nucleic acid in the host. Host organisms encompassed by the present invention include procaryotes and eucaryotes, particularly animals and plants. The present invention also relates to viruses containing the viral vectors which are infective, production cells which are capable of producing the viruses or parts thereof, a host infected by the viruses of the invention, the gene products produced by expression of the viral nucleic acids and a process for the production of a desired product by growing the infected hosts.
Abstract:
The present invention relates to a recombinant viral nucleic acid selected from a (+) sense, single stranded RNA virus possessing a native subgenomic promoter encoding for a first viral subgenomic promoter, a nucleic acid sequence that codes for a viral coat protein whose transcription is regulated by the first viral subgenomic promoter, a second viral subgenomic promoter and a second nucleic acid sequence whose transcription is regulated by the second viral subgenomic promoter. The first and second viral subgenomic promoters of the recombinant viral nucleic acid do not have homologous sequences relative to each other. The recombinant viral nucleic acid provides the particular adivantage that it systemically transcribes the second nucleic acid in the host. Host organisms encompassed by the present invention include procaryotes and eucaryotes, particularly animals and plants.The present invention also relates to viruses containing the viral vectors which are infective, production cells which are capable of producing the viruses or parts thereof, a host infected by the viruses of the invention, the gene products produced by expression of the viral nucleic acids and a process for the production of a desired product by growing the infected hosts.
Abstract:
The present invention is directed to recombinant plant viral nucleic acids and to hosts infected thereby. The recombinant plant viral nucleic acids comprise a native plant viral subgenomic promoter, at least one non-native plant viral subgenomic promoter, a plant viral coat protein coding sequence, and optionally, at least one non-native nucleic acid sequence to be transcribed or expressed in the infected host plant. The recombinant plant viral nucleic acids are stable, capable of systemic infection and capable of stable transcription or expression in the plant host of the non-native nucleic acid sequences.
Abstract:
The present invention is directed to recombinant plant viral nucleic acids and to hosts infected thereby. The recombinant plant viral nucleic acids comprise a native plant viral subgenomic promoter, at least one non-native plant viral subgenomic promoter, a plant viral coat protein coding sequence, and optionally, at least one non-native nucleic acid sequence to be transcribed or expressed in the infected host plant. The recombinant plant viral nucleic acids are stable, capable of systemic infection and capable of stable transcription or expression in the plant host of the non-native nucleic acid sequences.
Abstract:
Disclosed herein are viral vectors suitable for transfection into woody trees for purposes of delivering and expressing beneficial genes with increased stability. Specifically exemplified herein are vectors for transfecting citrus trees. The vectors allow for the expression of useful proteins, such as those that can protect the tree from disease.
Abstract:
The present invention relates to a recombinant viral nucleic acid selected from a (+) sense, single stranded RNA virus possessing a native subgenomic promoter encoding for a first viral subgenomic promoter, a nucleic acid sequence that codes for a viral coat protein whose transcription is regulated by the first viral subgenomic promoter, a second viral subgenomic promoter and a second nucleic acid sequence whose transcription is regulated by the second viral subgenomic promoter. The first and second viral subgenomic promoters of the recombinant viral nucleic acid do not have homologous sequences relative to each other. The recombinant viral nucleic acid provides the particular advantage that it systemically transcribes the second nucleic acid in the host. Host organisms encompassed by the present invention include procaryotes and eucaryotes, particularly animals and plants. The present invention also relates to viruses containing the viral vectors which are infective, production cells which are capable of producing the viruses or parts thereof, a host infected by the viruses of the invention, the gene products produced by expression of the viral nucleic acids and a process for the production of a desired product by growing the infected hosts.
Abstract:
The present invention is directed to recombinant plant viral nucleic acids and to hosts infected thereby. The recombinant plant viral nucleic acids comprise a native plant viral subgenomic promoter, at least one non-native plant viral subgenomic promoter, a plant viral coat protein coding sequence, and optionally, at least one non-native nucleic acid sequence to be transcribed or expressed in the infected host plant. The recombinant plant viral nucleic acids are stable, capable of systemic infection and capable of stable transcription or expression in the plant host of the non-native nucleic acid sequences.
Abstract:
Disclosed herein are viral vectors suitable for transfection into woody trees for purposes of delivering and expressing beneficial genes. Specifically exemplified herein are vectors for transfecting citrus trees. The vectors allow for the expression of useful proteins, such as those that can protect the tree from disease. Specifically exemplified herein are methods of transfecting woody trees that allow multiple applications of vectors while avoiding superinfection exclusion.