摘要:
A data processing system (10) allows an authorized user to unlock a security mode by providing a code stored in a plurality of mask registers (60,62,66) such that the system is selectively allowed to communicate with an external device. When an reset signal is received, a selector (48) selects a first mask register (60) and retrieves a first stored address value and a first stored data value therefrom. The first stored address and data values are respectively compared with a first address value and a first data value by a comparator (44). This process of selecting and comparing continues until a final match signal is asserted. When the final match signal is asserted, a secure signal is negated and the system may communicate with the external user.
摘要:
An integrated circuit microprocessor has on-board programmable chip select logic. Each of several chip select outputs is individually programmable by means of one or more control register bit fields. For instance, each chip select is asserted for bus cycles within an address range whose starting address and block size are both programmable. In addition, each chip select can be programmed to be active on read cycles only, on write cycles only, or on both read and write cycles. Each chip select can be programmed to be active during interrupt acknowledge cycles only if the interrupt being acknowledged has the same priority level as has been programmed for that chip select. In addition, the timing of the assertion of each chip select is programmable to coincide with either the address strobe or data strobe of the bus cycle. The chip select logic is designed so that it is configured to come out of reset by producing an active chip select signal during the first bus cycle run by the processor following the reset. This chip select is appropriate for selecting a boot ROM, and may later be re-programmed for other use. The chip select logic is capable of supporting cycle-by-cycle dynamic bus sizing by asserting appropriate cycle termination signals. The chip select logic can also insert a programmable number of wait states into a bus cycle to accommodate slow peripherals or can cause a fast termination of a bus cycle to improve the utilization of fast peripherals.
摘要:
An analog-to-digital conversion system module comprises a pin-limited A/D converter integrated circuit (I.C.) to which at least one multiplexer I.C. may be coupled and sampled.In one embodiment, host system software involvement is minimized by providing a sequence of sample commands, implemented by a channel sequencer or a programmable control table comprising a plurality of conversion command words (CCW's). A set of CCW's defines a conversion sequence which may be initiated and performed with minimal host system software involvement, upon conclusion of which a result table storing the converted digital values may be read by an associated device, such as a CPU.In one embodiment, some I/O pins of the A/D converter I.C. function either as analog inputs or address outputs to the external multiplexer, while other analog input pins alternatively function as single input channels or as combined channels from one or more external multiplexers. A software-loadable control register comprises a control field for a control word which determines the function of the programmable pins.
摘要:
A bus master is provided with the capability to accept a data transfer task from a CPU, which includes the performance of a predetermined sequence of data transfer operations between memory and a selected peripheral controlled by a respective controller. During any one of the operations, the bus master may be requested to relinquish the bus so that a higher priority transfer may occur or a deadlock condition resolved. In response to such request, the bus master immediately terminates the current bus cycle, but remembers the state thereof at the time of relinquishment. After the high priority transfer is completed, the bus master may be allowed to rearbitrate for use of the bus. Upon again obtaining control of the bus, the bus master restarts the bus cycle which was prematurely terminated and continues the sequence of operations as if no relinquishment had occurred.
摘要:
A clock generator (30) dynamically generates a system clock in response to a high or a low frequency oscillator. An amplified oscillator input is provided to a first input of a multiplexor (62), a divider (56), and a comparator circuit (58, 60). Divider (56) divides an oscillator input frequency to provide a divided input to a second input of multiplexor (62). Comparator circuit (58,60) compares the input frequency with a reference frequency to determine whether the input frequency is high or low. If the input frequency is low, multiplexor (62) is enabled to provide the oscillator input as the system clock. If the input frequency is high, multiplexor (62) provides the divided input as the system clock. Additionally, comparator circuit (58,60) provides a control signal to enable an amplifier (50) to amplify the oscillator input using a high or low gain factor in accordance with the input frequency.