-
公开(公告)号:US20150380355A1
公开(公告)日:2015-12-31
申请号:US14766333
申请日:2014-02-05
申请人: John A. ROGERS , Jonathan FAN , Woon-Hong YEO , Yewang SU , Yonggang HUANG , Yihui ZHANG , THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS , NORTHWESTERN UNIVERSITY
发明人: John A. ROGERS , Jonathan FAN , Woon-Hong YEO , Yewang SU , Yonggang HUANG , Yihui ZHANG
IPC分类号: H01L23/538 , H01L23/552 , H01L23/22 , H01L23/24 , H05K1/02 , H01L23/00
CPC分类号: H01L23/5387 , H01L23/538 , H01L23/5386 , H01L23/5389 , H01L23/552 , H01L23/564 , H01L24/97 , H01L29/78603 , H01L2224/16225 , H01L2924/12032 , H01L2924/12041 , H01L2924/12042 , H01L2924/12043 , H05K1/0283 , H01L2924/00
摘要: The present invention provides electronic circuits, devices and device components including one or more stretchable components, such as stretchable electrical interconnects, electrodes and/or semiconductor components. Stretchability of some of the present systems is achieved via a materials level integration of stretchable metallic or semiconducting structures with soft, elastomeric materials in a configuration allowing for elastic deformations to occur in a repeatable and well-defined way. The stretchable device geometries and hard-soft materials integration approaches of the invention provide a combination of advance electronic function and compliant mechanics supporting a broad range of device applications including sensing, actuation, power storage and communications.
摘要翻译: 本发明提供了包括一个或多个可伸缩部件的电子电路,器件和器件部件,例如可拉伸电互连,电极和/或半导体部件。 本发明的一些系统的拉伸性通过可拉伸的金属或半导体结构与柔性的弹性体材料的材料级整合来实现,该结构允许弹性变形以可重复和明确的方式进行。 本发明的可拉伸装置几何形状和硬 - 软材料集成方法提供了前进电子功能和顺应力学的组合,其支持广泛的装置应用,包括感测,致动,蓄电和通信。
-
2.
公开(公告)号:US20110151190A1
公开(公告)日:2011-06-23
申请号:US12599286
申请日:2008-05-08
申请人: Jae-Hyun Chung , Guofeng Bai , Woon-Hong Yeo
发明人: Jae-Hyun Chung , Guofeng Bai , Woon-Hong Yeo
CPC分类号: B82Y10/00 , B82Y40/00 , H01L21/0337 , H01L29/0665 , H01L29/0673 , Y10T428/24372
摘要: An advanced high-resolution and high-throughput shadow edge (116) lithography (SEL) method is disclosed for forming uniform zero- one- and two-dimensional nanostructures on a substrate. The method entails high-vacuum oblique vapor deposition and a compensated shadow effect of a pre-patterned layer (100). A method of compensating for cross-substrate variation is also disclosed. The compensation approach enables routine, low-cost fabrication of uniform nanoscale features, or nanogaps (110) on the order of 10 nm±1 nm, that can be used to etch nanowells (196) or to form nanostructures such as nanowires (169), using a selective metal lift-off process. A wafer-scale analytical model is proposed for predicting the width of nanogaps (110) fabricated by the shadow effect on pre-patterned edges. By combining compensation and pattern reversal techniques with multiple shadow patterning, two-dimensional structures such as crossing nanowires may be generated. A technique is disclosed for smoothing edge roughness of the nanostructures.
摘要翻译: 公开了先进的高分辨率和高通量阴影边缘(116)光刻(SEL)方法,用于在衬底上形成均匀的零一维和二维纳米结构。 该方法需要高真空倾斜气相沉积和预图案化层(100)的补偿阴影效应。 还公开了补偿交叉衬底变化的方法。 补偿方法可以实现均匀纳米尺度特征或10nm±1nm量级的纳米角(110)的常规,低成本制造,其可用于蚀刻纳米孔(196)或形成纳米结构,例如纳米线(169) ,使用选择性金属剥离过程。 提出了一种晶片级分析模型,用于预测通过阴影效应制作的预先图案化边缘的纳米光栅(110)的宽度。 通过将补偿和图案反转技术与多个阴影图案组合,可以产生诸如交叉纳米线的二维结构。 公开了一种用于平滑纳米结构的边缘粗糙度的技术。
-
公开(公告)号:US20190015685A1
公开(公告)日:2019-01-17
申请号:US16069235
申请日:2017-01-12
申请人: Mark Oslyn , Siyong Kim , Woon-Hong Yeo , Melvin Rosario , Ross Cruikshank , Daniel Martinez , Charles Cartin , VIRGINIA COMMONWEALTH UNIVERSITY
发明人: Mark Ostyn , Siyong Kim , Woon-Hong Yeo , Thomas Dwyer , Melvin Rosario , Ross Cruikshank , Daniel Martinez , Charles Cartin
摘要: A motion compensation system includes a plurality of RF transmitters, a plurality of direction of arrival sensors, and a positioning table which together are usable to compensate for intrafraction motion of a patient during a medical procedure. The positioning table may be a secondary table arranged next to or above a primary table such as a radiotherapy couch, allowing for repositioning of part of patient such as the head and neck relative to a remainder of the body. The motion compensation system employs a direction of arrival sensor that includes rotating antenna elements in a configuration that improves the ease and accuracy of signal processing and analysis to identify the position of an RF transmitter affixed to a patient. The repositioning table has six degrees of freedom and is safe for use in imaging and radiation intensive environments.
-
公开(公告)号:US20240252102A1
公开(公告)日:2024-08-01
申请号:US18564391
申请日:2022-05-27
发明人: Woon-Hong YEO , Hyojung J. CHOO
CPC分类号: A61B5/4519 , A61B5/257 , A61B5/28 , A61B5/291 , A61B5/296 , A61B5/4842 , A61B5/4848 , A61B5/6832 , A61B2503/40 , A61B2503/42 , A61B2560/0468 , A61B2562/0219 , A61B2562/028 , A61B2562/125 , A61B2562/164 , A61B2562/166
摘要: Described herein are wireless nanomembrane non-invasive system that integrates skin-wearable printed sensors and electronics and methods that can be used to monitor an electrophysiological parameter of a subject or to identify a therapeutic agent. The systems can include wearable devices, including skin-wearable printed sensors; and electronics for real-time, continuous monitoring of electrophysiological parameters of a subject.
-
-
-