Abstract:
The present invention relates to humanized antibodies binding to CD47; diabodies binding to human CD47, characterized in that a disulfide bond exists between diabody-forming fragments; genes encoding any one of said antibodies; vectors containing said genes; host cells containing said vectors; processes for preparing antibodies comprising the step of culturing said host cells; and therapeutic agents for hematological disorders comprising said antibodies.
Abstract:
A method for diagnosing cancer comprising detecting ROBO1 protein is disclosed. In addition, a method for treating a disease caused by abnormal cell growth comprising administrating an antibody that binds to ROBO1, as well as a pharmaceutical composition, a cell growth inhibitor and an anticancer agent comprising an antibody that binds to ROBO1 as an active ingredient are disclosed. Further, a method for inducing cell damages in a ROBO1 expressing cell and a method for inhibiting the growth of a ROBO1 expressing cell by bringing a ROBO1 expressing cell into contact with an antibody that binds to ROBO1, are disclosed. Furthermore, a method for monitoring progression of hepatitis by detecting ROBO1 protein is disclosed.
Abstract:
A method for diagnosing cancer comprising detecting ROBO1 protein is disclosed. In addition, a method for treating a disease caused by abnormal cell growth comprising administrating an antibody that binds to ROBO1, as well as a pharmaceutical composition, a cell growth inhibitor and an anticancer agent comprising an antibody that binds to ROBO1 as an active ingredient are disclosed. Further, a method for inducing cell damages in a ROBO1 expressing cell and a method for inhibiting the growth of a ROBO1 expressing cell by bringing a ROBO1 expressing cell into contact with an antibody that binds to ROBO1, are disclosed. Furthermore, a method for monitoring progression of hepatitis by detecting ROBO1 protein is disclosed.
Abstract:
An antibody capable of binding to a specific region of glypican 3, as well as a humanized antibody created based on that antibody are disclosed. The anti-GPC3 antibody of the invention has a higher ADCC activity and CDC activity compared with those of a conventional antibody. The antibody of the present invention is useful as a cell growth inhibitor, an anticancer agent and an agent for diagnosis of cancers.
Abstract:
The present invention relates to humanized antibodies binding to CD47; diabodies binding to human CD47, characterized in that a disulfide bond exists between diabody-forming fragments; genes encoding any one of said antibodies; vectors containing said genes; host cells containing said vectors; processes for preparing antibodies comprising the step of culturing said host cells; and therapeutic agents for hematological disorders comprising said antibodies.
Abstract:
An antibody capable of binding to a specific region of glypican 3, as well as a humanized antibody created based on that antibody are disclosed. The anti-GPC3 antibody of the invention has a higher ADCC activity and CDC activity compared with those of a conventional antibody. The antibody of the present invention is useful as a cell growth inhibitor, an anticancer agent and an agent for diagnosis of cancers.
Abstract:
The present invention relates to humanized antibodies binding to CD47; diabodies binding to human CD47, characterized in that a disulfide bond exists between diabody-forming fragments; genes encoding any one of said antibodies; vectors containing said genes; host cells containing said vectors; processes for preparing antibodies comprising the step of culturing said host cells; and therapeutic agents for hematological disorders comprising said antibodies.
Abstract:
The present invention provides an anti-cancer agent comprising anti-glypican 3 antibody wherein the anti-cancer agent is administered after a cancer treatment, Preferably, after a cancer treatment is after a treatment for liver cancer, and the treatment for liver cancer is in particular a resection of liver cancer cells. The anti-cancer agent according to the present invention is preferably administered if glypican 3 is expressed in the resected liver cancer cells. The anti-glypican 3 antibody is preferably a monoclonal antibody. The anti-cancer agent according to the present invention is useful for preventing cancer and for preventing the recurrence of cancer.
Abstract:
An antibody capable of binding to a specific region of glypican 3, as well as a humanized antibody created based on that antibody are disclosed. The anti-GPC3 antibody of the invention has a higher ADCC activity and CDC activity compared with those of a conventional antibody. The antibody of the present invention is useful as a cell growth inhibitor, an anticancer agent and an agent for diagnosis of cancers.
Abstract:
A novel pharmaceutical composition for treating or preventing hepatocellular carcinoma and a method of treatment are provided. A pharmaceutical composition for treating or preventing liver cancer is obtained by combining a chemotherapeutic agent with an anti-glypican 3 antibody. Also disclosed is a pharmaceutical composition for treating or preventing liver cancer which comprises as an active ingredient an anti-glypican 3 antibody for use in combination with a chemotherapeutic agent, or which comprises as an active ingredient a chemotherapeutic agent for use in combination with an anti-glypican 3 antibody. Using the chemotherapeutic agent and the anti-glypican 3 antibody in combination yields better therapeutic effects than using the chemotherapeutic agent alone, and mitigates side effects that arise from liver cancer treatment with the chemotherapeutic agent.