摘要:
Since the multipotent progenitor/stem cells isolated and cultured from the cord blood-derived mononuclear cells according to the method of the present invention are capable of differentiating into several types of cells including neurons, osteoblasts, myoblasts, endothelial cells, hepatocytes and dendritic cells, they can be effectively used for a cell therapy, a cell restoration technique or an organ production.
摘要:
A semiconductor substrate includes a first transistor area having a first gate electrode and first source/drain areas, a second transistor area having a second gate electrode and second source/drain areas, and an interface area provided at an interface of the first transistor area and the second transistor area and having a third gate electrode. A first stress film is on the first gate electrode and the first source/drain areas of the first transistor area and at least a portion of the third gate electrode of the interface area. A second stress film is on the second gate electrode and the second source/drain areas of the second transistor area and not overlapping the first stress film on the third gate electrode of the interface area or overlapping at least a portion of the first stress film. The second stress film overlapping at least the portion of the first stress film is thinner than the second stress film in the second transistor area. Related methods are also described.
摘要:
A method of forming a via contact structure using a dual damascene process is disclosed. According to one embodiment a sacrificial layer is formed on an insulating interlayer during the formation of a preliminary via hole. The sacrificial layer has the same composition as a layer filling the preliminary via hole in a subsequent trench formation process. The sacrificial layer and the layer filling the preliminary via hole are simultaneously removed after the trench formation process is carried out. According to another embodiment, a thin capping oxide layer is formed on an insulating interlayer during the formation of a preliminary via hole. The thin capping oxide layer is removed together with a sacrificial layer after a trench formation process is carried out.
摘要:
A semiconductor device includes a first stress film covering a first gate electrode and first source/drain areas of a first transistor area and at least a portion of a third gate electrode of an interface area, a second stress film covering a second gate electrode and second source/drain areas of a second transistor area and overlapping at least a portion of the first stress film on the third gate electrode of the interface area, and an interlayer insulating film formed on the first and the second stress film. The semiconductor device further includes a plurality of first contact holes formed through the interlayer insulating film and the first stress film in the first transistor area to expose the first gate electrode and the first source/drain areas, a plurality of second contact holes formed through the interlayer insulating film and the second stress film in the second transistor area to expose the second gate electrode and the second source/drain areas, and a third contact hole formed through the interlayer insulating film, the second stress film, and the first stress film in the interface area to expose the third gate electrode. A depth of a recessed portion of an upper side of the third gate electrode in which the third contact hole is formed is equal to or larger than a depth of a recessed portion of an upper side of the first gate electrode in which the first contact hole is formed.
摘要:
A method of forming wires of a semiconductor device including forming a first metal wire on a semiconductor substrate; forming a first insulating film on the first metal wire; etching a portion of the first insulating film to expose a surface portion of the first metal wire; forming a first barrier metal film on sidewalls of the opening and the exposed first metal wire; etching a portion of the first barrier metal film on the first metal wire to expose a surface portion of the first metal wire; performing a heat treatment process on the exposed surface portion of the first metal wire to improve surface roughness; and forming a second wire by filling the opening using a conductive material.
摘要:
A semiconductor substrate includes a first transistor area having a first gate electrode and first source/drain areas, a second transistor area having a second gate electrode and second source/drain areas, and an interface area provided at an interface of the first transistor area and the second transistor area and having a third gate electrode. A first stress film is on the first gate electrode and the first source/drain areas of the first transistor area and at least a portion of the third gate electrode of the interface area. A second stress film is on the second gate electrode and the second source/drain areas of the second transistor area and not overlapping the first stress film on the third gate electrode of the interface area or overlapping at least a portion of the first stress film. The second stress film overlapping at least the portion of the first stress film is thinner than the second stress film in the second transistor area. Related methods are also described.
摘要:
There is provided a method of forming a dual damascene metal interconnection by employing a sacrificial metal oxide layer. The method includes preparing a semiconductor substrate. An interlayer insulating layer is formed on the semiconductor substrate, and a preliminary via hole is formed by patterning the interlayer insulating layer. A sacrificial via protecting layer is formed on the semiconductor substrate having the preliminary via hole to fill the preliminary via hole, and cover an upper surface of the interlayer insulating layer. A sacrificial metal oxide layer is formed on the sacrificial via protecting layer, the sacrificial metal oxide layer is patterned to form a sacrificial metal oxide pattern having an opening crossing over the preliminary via hole, and exposing the sacrificial via protecting layer. The sacrificial via protecting layer and the interlayer insulating layer are etched using the sacrificial metal oxide pattern as an etch mask to form a trench located inside the interlayer insulating layer.
摘要:
A semiconductor substrate includes a first transistor area having a first gate electrode and first source/drain areas, a second transistor area having a second gate electrode and second source/drain areas, and an interface area provided at an interface of the first transistor area and the second transistor area and having a third gate electrode. A first stress film is on the first gate electrode and the first source/drain areas of the first transistor area and at least a portion of the third gate electrode of the interface area. A second stress film is on the second gate electrode and the second source/drain areas of the second transistor area and not overlapping the first stress film on the third gate electrode of the interface area or overlapping at least a portion of the first stress film. The second stress film overlapping at least the portion of the first stress film is thinner than the second stress film in the second transistor area. Related methods are also described.
摘要:
There are provided metal-insulator-metal (MIM) capacitors and methods of forming the same. The capacitors and the formation methods thereof provide a way of simplifying semiconductor fabrication processes, using component elements of the capacitor and insulating layers around the capacitor. To this end, lower and upper electrodes are sequentially stacked on a semiconductor substrate. A dielectric layer pattern is interposed between the upper and lower electrodes. An etch stop layer pattern and an etch buffer layer are disposed on the upper electrode and under the lower electrode, respectively. The upper and lower electrodes are disposed to expose the dielectric layer pattern and the etch buffer layer.
摘要:
There is provided a method of forming a dual damascene metal interconnection by employing a sacrificial metal oxide layer. The method includes preparing a semiconductor substrate. An interlayer insulating layer is formed on the semiconductor substrate, and a preliminary via hole is formed by patterning the interlayer insulating layer. A sacrificial via protecting layer is formed on the semiconductor substrate having the preliminary via hole to fill the preliminary via hole, and cover an upper surface of the interlayer insulating layer. A sacrificial metal oxide layer is formed on the sacrificial via protecting layer, the sacrificial metal oxide layer is patterned to form a sacrificial metal oxide pattern having an opening crossing over the preliminary via hole, and exposing the sacrificial via protecting layer. The sacrificial via protecting layer and the interlayer insulating layer are etched using the sacrificial metal oxide pattern as an etch mask to form a trench located inside the interlayer insulating layer.