Abstract:
A cleaning subsystem removes unwanted material, such as glaze, from saw blades used in a semiconductor singulation process. A cleaning module moves radially towards the saw blade and vertically with respect to the plane of the saw blade in order to enable abrasive cleaning blocks of the cleaning module to selectively remove material from either the upper and lower surfaces of the saw blade or the outer edge of the saw blade. The cleaning assembly can remove material from the saw blade at a predetermined time or position during the singulation process or upon detection of load imbalance during the rotation of the saw blade.
Abstract:
A main pole of a perpendicular magnetic recording write head is disclosed with a non-rectangular shape at the air bearing surface and a rectangular shape behind the air bearing surface. The main pole transitions from the non-rectangular shape to a rectangular shape at a distance of 10 nm to 100 nm behind the air bearing surface. The main pole includes leading and trailing beveled surfaces that extend from the non-rectangular shape of the pole at the air bearing surface toward the rectangular shape transition.
Abstract:
A semiconductor wafer has a multi-stage structure that damps and contains nascent cracks generated during dicing and inhibits moisture penetration into the active region of a die. The wafer includes an array of die regions separated by scribe lanes. The die regions include an active region and a first ring that surrounds the active region. A portion of the first ring includes a low-k dielectric material. A second ring includes a stack of alternating layers of metal and interlayer dielectric (ILD) material. A dummy metal region around the rings includes a stacked dummy metal features and surrounds the active region. A regular or irregular staggered arrangement of saw grid process control (SGPC) features reduces mechanical stress during dicing.
Abstract:
A grid array assembly is formed from an electrical insulating material with embedded solder deposits. A first portion of each of the solder deposits is exposed on a first surface of the insulating material and a second portion of each of the solder deposits is exposed on an opposite surface of the insulating material. A semiconductor die is mounted to the first surface of the insulating material and electrodes of the die are connected to the solder deposits with bond wires. The die, bond wires, and the first surface of the insulating material then are covered with a protective encapsulating material.
Abstract:
A cleaning subsystem removes unwanted material, such as glaze, from saw blades used in a semiconductor singulation process. A cleaning module moves radially towards the saw blade and vertically with respect to the plane of the saw blade in order to enable abrasive cleaning blocks of the cleaning module to selectively remove material from either the upper and lower surfaces of the saw blade or the outer edge of the saw blade. The cleaning assembly can remove material from the saw blade at a predetermined time or position during the singulation process or upon detection of load imbalance during the rotation of the saw blade.
Abstract:
A grid array assembly is formed from an electrical insulating material with embedded solder deposits. A first portion of each of the solder deposits is exposed on a first surface of the insulating material and a second portion of each of the solder deposits is exposed on an opposite surface of the insulating material. A semiconductor die is mounted to the first surface of the insulating material and electrodes of the die are connected to the solder deposits with bond wires. The die, bond wires, and the first surface of the insulating material then are covered with a protective encapsulating material.
Abstract:
A method and system for providing a magnetic recording head is described. The magnetic recording head has an air-bearing surface (ABS) configured to reside in proximity to a media during use. The magnetic recording head includes a main pole, at least one auxiliary pole, a nonmagnetic spacer, and at least one coil. The main pole includes a first main pole piece and a second main pole piece. The first main pole piece includes a pole tip occupying a portion of the ABS and a back edge distal from the ABS. The second main pole piece has a front surface. The auxiliary pole(s) have a front recessed from the ABS and are magnetically coupled with the main pole. The nonmagnetic spacer is between the back edge of the first main pole piece and the front surface of the second main pole piece. The coil(s) are for energizing the main pole.
Abstract:
A method of packaging a power semiconductor die includes providing a first lead frame of a dual gauge lead frame. The first lead frame includes a thick die pad. A tape is attached to a first side of the thick die pad and the power die is attached to a second side of the thick die pad. A second lead frame of the dual gauge lead frame is provided. The second lead frame has thin lead fingers. One end of the lead fingers is attached to an active surface of the power die such that the lead fingers are electrically connected to bonding pads of the power die. A molding compound is then dispensed onto a top surface of the dual gauge lead frame such that the molding compound covers the power die and the lead fingers.
Abstract:
A magnetic transducer having an air-bearing surface (ABS) is described. The magnetic transducer includes a pole and at least one coil for energizing the pole. The pole has a pole tip proximate to the ABS, a yoke distal from the ABS, and a bottom surface including a bottom bevel. At least the yoke includes at least one sidewall having a first angle and a second angle. The first angle is between the bottom surface and the at least one sidewall. The second angle is a constant distance along the at least one sidewall from the first angle.
Abstract:
Systems and methods for providing perpendicular magnetic writers having gradient magnetic moment side shields are provided. In one case, the system includes a pole having a leading edge and trailing edge, a leading shield positioned closer to the leading edge than the trailing edge, the leading shield having a leading shield moment, a trailing shield positioned closer to the trailing edge than the leading edge, the trailing shield having a trailing shield moment greater than the leading shield moment, and a side shield positioned along side of the pole, the side shield including a gradient magnetic moment progressing from a first side shield moment to a second side shield moment, where the first side shield moment is about equal to the leading shield moment, and where the second side shield moment is about equal to the trailing shield moment and positioned closer to the trailing shield than the leading shield.