Abstract:
A solid state switching device, such as a solid state circuit breaker, includes at least one heat sink, a control electronics printed circuit board (PCB), and power electronics. The power electronics are useful to regulate the flow of current from one terminal of the solid state switching device to another terminal. The power electronics can include one or more solid state devices such as FETs, Thyristors, Thyristors+SiC JFET in parallel, IGBTs, and IGCTs. The control PCB can include a variety of circuit elements useful to perform the function of a gate driver useful to activate the solid state device of the power electronics. The control electronics can be positioned laterally to the power electronics and spanning from a heat sink positioned on one side of the power electronics to a heat sink positioned on an opposing side of the power electronics.
Abstract:
An electronics package includes an electrically conducting support layer; at least one electrically conducting outer layer; at least two power electronics components arranged on different sides of the support layer and electrically interconnected with the support layer and with the at least one outer layer; and isolation material, in which the support layer and the at least two power electronics components are embedded, the support layer and the at least one outer layer are laminated together with the isolation material; and a cooling channel for conducting a cooling fluid through the electronics package, the cooling channel runs between the at least two power electronics components through the support layer.
Abstract:
A solid state switching device, such as a solid state circuit breaker, includes at least one heat sink, a control electronics printed circuit board (PCB), and power electronics. The power electronics are useful to regulate the flow of current from one terminal of the solid state switching device to another terminal. The power electronics can include one or more solid state devices such as FETs, Thyristors, Thyristors+SiC JFET in parallel, IGBTs, and IGCTs. The control PCB can include a variety of circuit elements useful to perform the function of a gate driver useful to activate the solid state device of the power electronics. The heat sink includes one or more signal vias formed therethrough to permit nesting of the control PCB within the heat sink.
Abstract:
A power semiconductor module comprises a base plate (1); a semiconductor chip (2) disposed on and in contact with a top surface of the base plate (1), a preform (3) disposed on and in contact with a top surface of the semiconductor chip (2); and a pressing element (4) in contact with and applying a pressure onto a top surface of the preform (3). The preform (3) comprises a first electrically conductive layer (6) and a second electrically conductive layer (5). The first electrically conductive layer (6) has at least one protrusion (7) protruding towards the top surface of the semiconductor chip (2) and defining a recess (9) in the first electrically conductive layer (6) of the preform (3), wherein the recess (9) may annularly surround the protrusion (7). The at least one protrusion (7) is made from the same material as the first electrically conducting layer (6) and integrally formed with it or the first electrically conducting layer (6) and the at least one protrusion (7) are made from different materials. At least a portion of the second electrically conductive layer (5) is positioned in the recess (9) and on the top surface of the semiconductor chip (2). The material of the at least one protrusion (7) has a higher melting point than the material of the second electrically conductive layer (5). The power semiconductor module is configured so that in an event of semiconductor chip failure with heat dissipation, the protrusion (7) of the first electrically conductive layer (6) penetrates through residual material (8) of the semiconductor chip (2) upon pressure applied by the pressing element (4) towards the base plate (1) so as to establish a contact between the protrusion (7) of the first electrically conductive layer (6) and the base plate (1) and form a short circuit bridging the defective semiconductor chip (2) in a short circuit failure mode. The bottom surface of the preform (3) may be formed by a bottom surface of the second electrically conductive layer (5) alone or by a bottom surface of the second electrically conductive layer (5) and a bottom surface of the protrusion (7).
Abstract:
An electric converter system, including a housing configured to receive a dielectric fluid, at least two electric modules, each including a first space and a second space, the first space including a connecting portion and a cooling system configured to circulate the dielectric fluid to cool the electric modules. The converter system further includes an inter module bus bar portion including a complementary connecting portion, whereby the connecting portion is configured to be connected to the complementary connecting portion of the inter module bus bar portion, whereby the inter module bus bar portion is configured to interconnect one of the at least two electric modules with the other of the at least two electric modules, said one electric module being proximate to said other electric module, and whereby the connecting portion, the first space and the second space of each electric module are arranged in series.
Abstract:
A semiconductor module comprises a semiconductor chip comprising a semiconductor switch having a collector, emitter and gate, a collector terminal connected to the collector, gate terminal connected to the gate, an emitter terminal connected to the emitter via an emitter conductor path having an emitter inductance, an auxiliary emitter terminal connected to the emitter, a first conductor path connected to the emitter, and a second conductor path connected to the emitter having a different mutually inductive coupling with the emitter conductor path as the first conductor path. The first conductor path and the second conductor path are connectable to the auxiliary emitter terminal and/or the first conductor path is connected to the auxiliary emitter terminal and the second conductor path is connected to a second auxiliary emitter terminal. The semiconductor switch is an IGBT and each of the first conductor path and the second conductor path comprises bridging points for connecting the respective conductor path to the auxiliary emitter terminal.
Abstract:
Systems, methods, techniques and apparatuses of power switches are disclosed. One exemplary embodiment is a power switch comprising an outer housing; a power electronics board disposed within the housing and including a semiconductor switch structured to selectively conduct a current between a first power terminal and a second power terminal; a first heat sink coupled to the power electronics board; a plurality of thermally conductive connectors; a second heat sink coupled to the plurality of thermally conductive connectors, a control electronics board structured to control the semiconductor switch, the control electronics board being located within an enclosure formed of the second heat sink, the plurality of thermally conductive connectors, and the power electronics board.
Abstract:
The present invention relates to a power semiconductor module, comprising at least two power semiconductor devices, wherein the at least two power semiconductor devices comprise at least one power semiconductor transistor and at least one power semiconductor diode, wherein at least a first substrate is provided for carrying the power semiconductor transistor in a first plane, the first plane lying parallel to the plane of the substrate, wherein the power semiconductor diode is provided in a second plane, wherein the first plane is positioned between the substrate and the second plane in a direction normal to the first plane and wherein the first plane is spaced apart from the second plane in a direction normal to the first plane. The first plane is spaced apart from the second plane in a direction normal to the first plane, whereby the first substrate is based on a direct bonded copper substrate and the first substrate is a direct-bonded copper substrate for carrying the transistor, on which first substrate a layer of a printed circuit board is provided for carrying the diode. Alternatively, the first substrate is a direct-bonded copper substrate for carrying the transistor, on which first substrate a foil is provided for carrying the diode, wherein the foil comprises an electrically insulating main body and an electrically conductive structure provided thereon for carrying the diode. Such a power semiconductor module provides a low stray inductance and/or may be built easily.
Abstract:
A semiconductor module comprises a semiconductor chip comprising a semiconductor switch having a collector, emitter and gate, a collector terminal connected to the collector, gate terminal connected to the gate, an emitter terminal connected to the emitter via an emitter conductor path having an emitter inductance, an auxiliary emitter terminal connected to the emitter, a first conductor path connected to the emitter, and a second conductor path connected to the emitter having a different mutually inductive coupling with the emitter conductor path as the first conductor path. The first conductor path and the second conductor path are connectable to the auxiliary emitter terminal and/or the first conductor path is connected to the auxiliary emitter terminal and the second conductor path is connected to a second auxiliary emitter terminal. The semiconductor switch is an IGBT and each of the first conductor path and the second conductor path comprises bridging points for connecting the respective conductor path to the auxiliary emitter terminal.
Abstract:
The present invention relates to a power semiconductor module, comprising at least two power semiconductor devices, wherein the at least two power semiconductor devices comprise at least one power semiconductor transistor and at least one power semiconductor diode, wherein at least a first substrate is provided for carrying the power semiconductor transistor in a first plane, the first plane lying parallel to the plane of the substrate, wherein the power semiconductor diode is provided in a second plane, wherein the first plane is positioned between the substrate and the second plane in a direction normal to the first plane and wherein the first plane is spaced apart from the second plane in a direction normal to the first plane. The first plane is spaced apart from the second plane in a direction normal to the first plane, whereby the first substrate is based on a direct bonded copper substrate and the first substrate is a direct-bonded copper substrate for carrying the transistor, on which first substrate a layer of a printed circuit board is provided for carrying the diode. Alternatively, the first substrate is a direct-bonded copper substrate for carrying the transistor, on which first substrate a foil is provided for carrying the diode, wherein the foil comprises an electrically insulating main body and an electrically conductive structure provided thereon for carrying the diode. Such a power semiconductor module provides a low stray inductance and/or may be built easily.