Abstract:
A convection-free flow-type reactor includes a reactor body. The reactor body includes a reaction chamber to house a fluid. An inlet is in communication with the reaction chamber to allow input of a reactant fluid. An outlet is in communication with the reaction chamber to allow output of a product fluid. An energy beam source device provides an energy beam to irradiate the reactant fluid in the reaction chamber. The disclosure further provides a convection-free flow-type synthesis method.
Abstract:
A method of tracking specific cells in vivo is disclosed. The method of the disclosure includes: providing fluorescent nanoparticles suitable for targeting of specific cells; administering the fluorescent nanoparticles to a subject; providing an X-ray source to irradiate the subject; and determining the distribution and growth of the specific cells by the fluorescent images from the fluorescent nanoparticles and X-ray images of the subject irradiated by the X-ray source.
Abstract:
The present invention relates to a method, a system, and a light source for penetrating radiation imaging, and more particularly, to a method, a system, and a light source for X-ray imaging. The system for X-ray phase contrast and high resolution imaging of the present invention comprises an X-ray source comprising a plurality of X-ray micro-light sources, an X-ray sensor configured to receive X-rays penetrating an object, and a computer configured to receive and compute raw image data from the X-ray sensor so as to obtain a clear image of the object.
Abstract:
The present disclosure provides a tumor vessel embolizing agent, including: unmodified gold nanoparticles; and a pharmaceutically acceptable medium. The present disclosure also provides a method of embolizing tumor vessel, including administrating gold nanoparticles as a tumor vessel embolizing agent into a subject to accumulate the gold nanoparticles at a tumor in the subject and to embolize a vessel of the tumor.
Abstract:
A method of tracking specific cells in vivo is disclosed. The method of the disclosure includes: providing fluorescent nanoparticles suitable for targeting of specific cells; administering the fluorescent nanoparticles to a subject; providing an X-ray source to irradiate the subject; and determining the distribution and growth of the specific cells by the fluorescent images from the fluorescent nanoparticles and X-ray images of the subject irradiated by the X-ray source.
Abstract:
A method of tracking growth and metastasis of specific cells in vivo is disclosed. The method of the disclosure includes culturing the specific cells in a medium containing 0.1 μM to 10 mM nanoparticles as a biomarker for X-rays, such that the specific cells carry the nanoparticles, administering the specific cells carrying the nanoparticles to a subject, irradiating the subject by an X-ray source, and determining the growth and metastasis of the specific cells by X-ray images of the nanoparticles in the subject.