Abstract:
Embodiments of a register file test circuit are disclosed that may allow for determining write performance at low power supply voltages. The register file test circuit may include a decoder, a multiplexer, a frequency divider, and a control circuit. The decoder may be operable to select a register cell within a register file, and the control circuit may be operable to controllably activate the read and write paths through the selected register cell, allowing data read to be inverted and re-written back into the selected register cell.
Abstract:
A memory array includes a number of word lines, with each word line coupled to a word line driver for memory write operations and a word line driver for memory read operations. A decode stage includes write logic for each word line and read logic for each word line. A word line driver stage includes a write word line driver and a read word line driver. The write logic for at least one world line is configured to enable the write word line driver for a memory write operation of the word line while prohibiting the read word line logic from enabling the read word line driver for a memory read operation of the word line.
Abstract:
A zero keeper circuit includes a dynamic input PFET connected to a source, an output, and a dynamic input. The circuit also includes a clock input NFET connected to the output, a pull-down node, and a clock input. The circuit also includes a dynamic input NFET connected to the pull-down node, a reference voltage, and the dynamic input. The circuit also includes a feedback PFET and a clock input PFET connected in series between the source and the output. The feedback PFET receives a feedback signal and the clock input PFET receives the clock input. The circuit also includes a feedback NFET connected to the output and the node. The feedback NFET is configured to couple the output to the node based on the feedback signal. The circuit also includes a NOR gate configured to provide the feedback signal based on the output and a bypass input.
Abstract:
Embodiments of a jitter detection circuit are disclosed that may allow for detecting both cycle and phase jitter in a clock distribution network. The jitter detection circuit may include a phase selector, a data generator, a delay chain, a logic circuit, and clocked storage elements. The phase selector may be operable to select a clock phase to be used for the launch clock, and the data generator may be operable to generate a data signal responsive to the launch clock. The delay chain may generate a plurality of outputs dependent upon the data signal, and the clocked storage elements may be operable to capture the plurality of outputs from the delay chain, which may be compared to expected data by the logic circuit.
Abstract:
A sense amplifier test circuit that may allow for detecting soft failures may include a voltage generator circuit, a sense amplifier, and a detection circuit. The voltage generator may be operable to controllably supply different differential voltages to the sense amplifier, and the detection circuit may be operable to detect an analog voltage on the output of the sense amplifier.
Abstract:
Embodiments of a jitter detection circuit are disclosed that may allow for detecting both cycle and phase jitter in a clock distribution network. The jitter detection circuit may include a phase selector, a data generator, a delay chain, a logic circuit, and clocked storage elements. The phase selector may be operable to select a clock phase to be used for the launch clock, and the data generator may be operable to generate a data signal responsive to the launch clock. The delay chain may generate a plurality of outputs dependent upon the data signal, and the clocked storage elements may be operable to capture the plurality of outputs from the delay chain, which may be compared to expected data by the logic circuit.